

Merging Art, Automation and Construction

11th Webinar on Revolution in Infrastructure Development by 3D Concrete Printing

Delivering Sustainability, Optimization and Speed using 3D Concrete Printing technology

Concrete is the most prevalent construction material due to its low cost and durability

Concrete needs to be poured in formwork

Source: Link

Conventional construction

- Labour intensive
- Requires formwork
 - Limited flexibility
 - Cost increases with complexity
- Time consuming

Source: Link

The Pain-Killer

Robotic construction

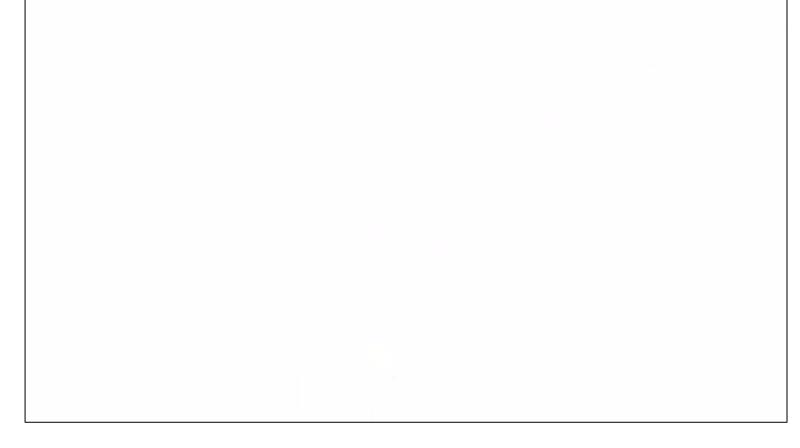
- Minimum labor
- Higher productivity

No need of formwork

- Ease of creating complex and optimized structures
- Minimal construction waste

Optimized 3D Designs

- Low material consumption
- Thermally efficient designs



Robust quality control

- Minimal human intervention
- Automated feeding, mixing, pumping and 3D printing

BIM and MEP integration

Video Link

Adoption Underway in Defence and Residential Civil Construction

<u>Video Link</u>

We work extensively with Indian Defence. We have built Blast and Impact resistant 3D printed structures for them

450+ Impact and Blast resistant bunkers delivered 5,000 Bunkers expected to be delivered in next 2 years

Construction time reduced from 45 days to 7 days
Higher Ballistic performance compared to
Conventional bunkers

3D-printed permanent defences have been constructed for first time by Indian Army's Corps of Engineers in desert sector. These defences were trial tested against a range of weapons from small arms to the main gun of T90 tank: Indian Army's Engineer-in-Chief Lt Gen Harpal Singh

We have built for Hills

- Higher insulation Reduced heating requirement
- Modular structures Reduced construction timelines

We have built for Deserts

- Higher insulation Reduced HVAC load
- Modular structures Reduced construction timelines
- Resilient structures Protection against Sand-storms and wind

We have built for Coastal regions

- Reduced corrosion Lower maintenance, higher life
- Waterproof Resilient against high humidity and monsoon

We have built for Highest Earthquake Prone Areas

- Structural stability Suitable for high seismic zones
- Lower insurance cost

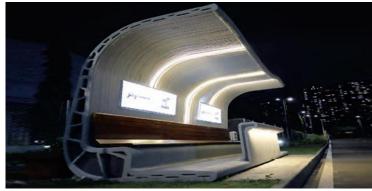
What can be built with 3DCP in Road Infrastructure

TU/e

Shimz

TU/e

TU/e


Bus stands

WINSUN

Tvasta / Godrej

WINSUN

Retaining walls

MiCoB WINSUN

WINSUN

Public utilities

Weber / Saint Gobain

СуВе

Source: <u>Link</u>

Road Dividers and Barriers

Manholes, Drains and Trenches

La SADE

MiCoB

Limitations

Higher cost

Limited pilot projects

Long term durability and structural performance data

Lack of Standards and Testing protocols

The Way Forward

Adoption Strategy

- —Short-term Adoption (1-2 years)
 - Road dividers and barriers
 - Manholes, Drains and Trenches
 - Bus stops, Public utilities, Toll booths
- -Mid-term Adoption (2-5 years)
 - Culverts
 - Retaining walls
 - Pedestrian bridges
 - Bridge pier formwork
- -Long-term Adoption (5-10 years)
 - Load bearing bridge components
 - Bridge foundations

The Way Forward

- Pilots for feasibility studies, structural testing and long-term performance data
- Committees for development of IRC, BIS, ASTM and ACI codes and guidelines
- Industry-Academia collaboration for full-scale pilots and testing
- Government push for promoting pilots through NHAI, BRO, CPWD and PWDs
- Awareness sessions to promote short-term and long-term adoption

Best Way to Predict the Future is to Create it!

-Peter Drucker

Let's Print the Future !!!