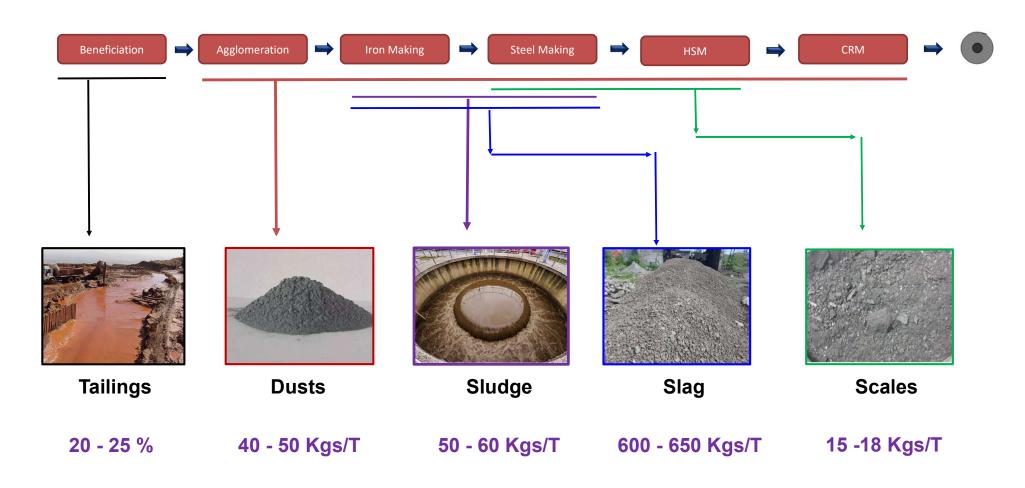
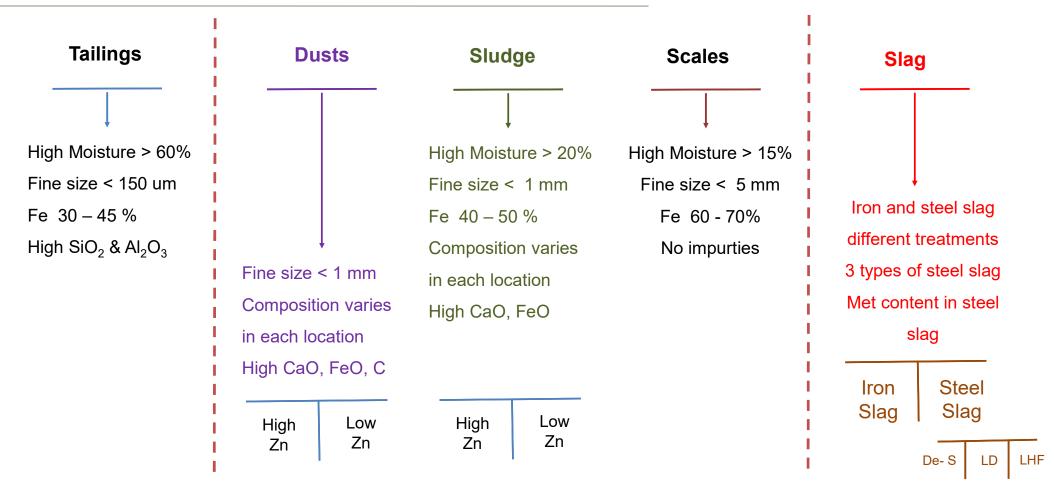
IRF-IC 5th Webinar Sustainable Alternative Industrial Waste Materials for Infrastructure Development

Sustainable Applications of Iron and Steel Plant Wastes in Infrastructure Development

Dr. D Satish Kumar Research and Development


Steel Plant Wastes

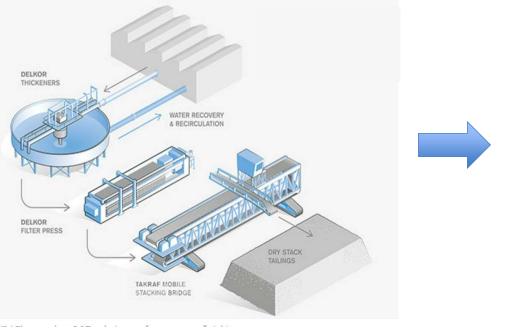
- The iron and steel making processes generate huge amount of wastes in form of slags, dusts and sludge.
- The disposal or recycling of these materials is a major concern for the steel industry.
- With increasing capacity of steel production, significant efforts and investments have been made into research over the years to develop the processing technologies which enable re-use them either directly or through development of new products.
- It is the time to convert the waste disposal and treatment concepts into <u>Integrated Waste</u>
 <u>Management</u> in steel plants.


Sustainability

- The requirement of a sustainable technology by meeting the needs of our present industry **without compromising the future growth** is really a challenge to the steel Industry today.
- With growing shortages of energy and materials, waste is now treated as a potential resource complying with Environmental legislation and regulations and the **economics of disposal**.
- Due to intensive reutilization of the wastes some of the solid wastes are now increasingly being referred as 'by-products'.
- The technologies are being developed to economically convert wastes of steel plants into wealth also provide new **business opportunities** for prospective entrepreneurs.

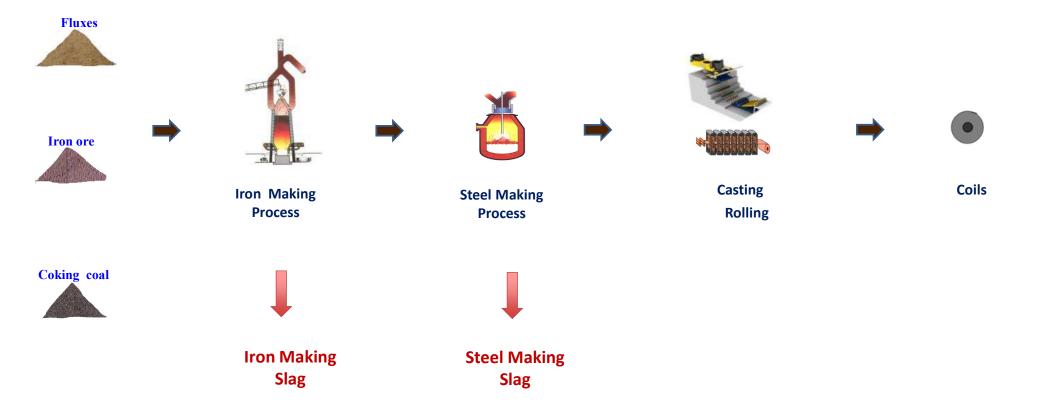
Wastes in Steel Plant

Wastes in Steel Plant



Tailing Treatment

Press Filters to De-watering


Moisture : 60 % \rightarrow < 20%

Dry Disposal

Mine Backfilling

Slag Generation

Broadly two different types of slags are generated in steel plants

Environmental Friendly Aggregates

Coarse Aggregates

Iron Making Slag

Slag flow

Technologies

Blast Furnace COREX

٠

•

Mostly Granulated

Dose not have carryover metal

Cementious – used for cement

100 % consumed – no issues to

Does not have Iron oxide

making (Slag Cement)

most steelmakers

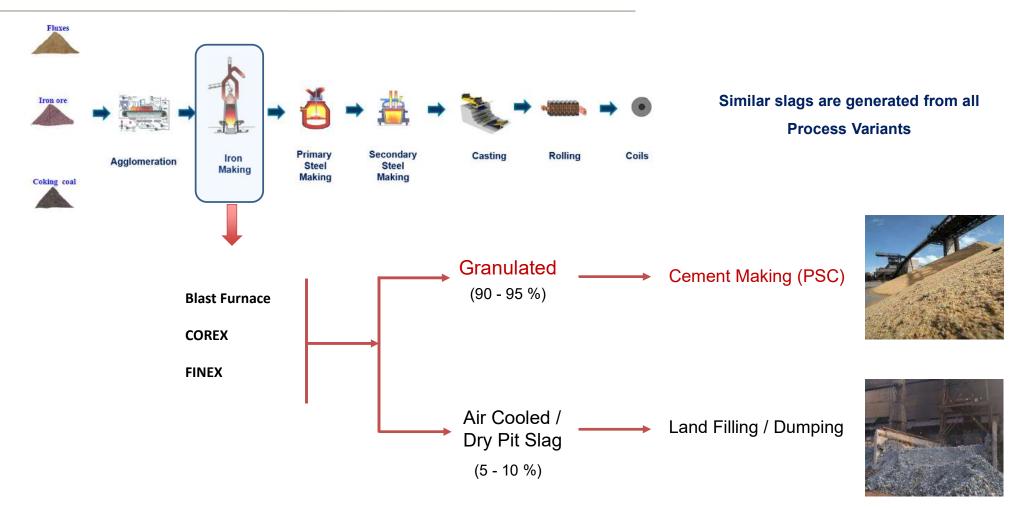
Technologies

BOF / LD EAF EOF Conarc Induction Furnace

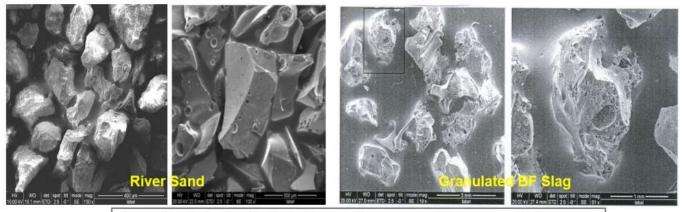
Steel Making Slag

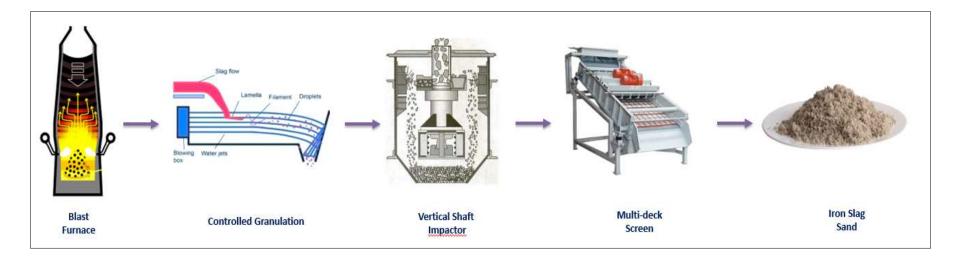
- Mostly Pit Cooled
 - Have carryover metal
 - Have Iron oxide
 - Non-Cementious not suitable for cement making
 - Disposal is concern most

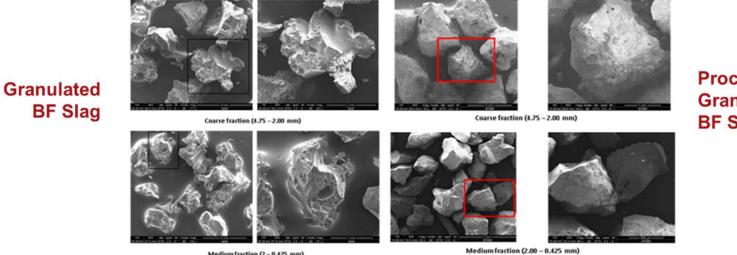
used for land filled



Lamella Filament Droplets

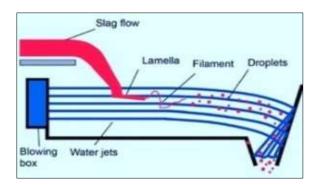


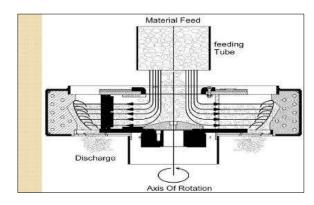

Iron Making Slags – Existing Technologies


Iron Making Slag

PROPERTIES	RIVER SAND	GBFS IS 383 - Zone II / Zone I Nil Good 1000 - 1100 2.3 4 -6 %		
Size	IS 383 - Zone II / Zone I			
Deleterious Material	0.2 %			
Soundness	Good			
Density, Kg/m3	1400 - 1700			
Sp Gravity	2.6 - 2.8			
Water Absorption	1 – 3 %			

Lower density in slags is due to its vesicular structure with presence of micro pores




Medium fraction (2 - 0.425 mm)

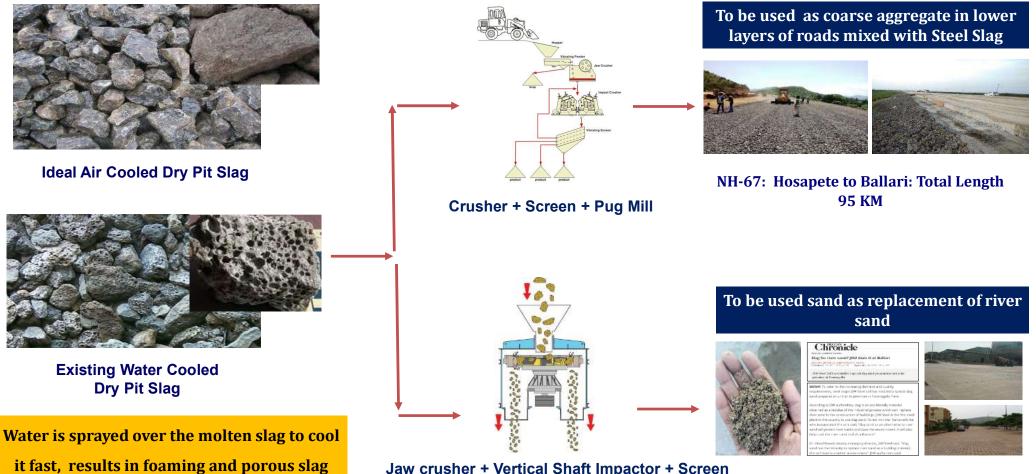
Processed Granulated **BF Slag**

Iron Making Slag Sand

• Step 1: Altering granulation parameters

• Step 2: Shaping and Screening

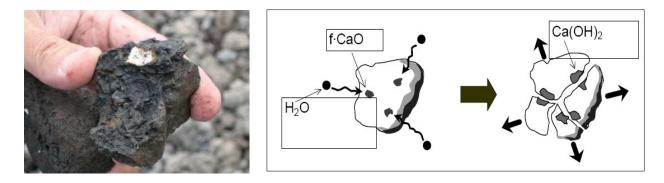
India's First Iron Slag Sand Plant


DRY SLAG GRANULATION

Dry slag granulation is the future technology of granulation

Technology	Wet granulation	Dry granulation		
Medium	Water	Air		
Water Consumption	0.6 – 0.7 Nm3/T	0.1–0.2 Nm3/T		
Operational cost	1	0.75		
Capital cost	1	0.80		
Heat Recovery	NA	Possible		
Slag handling	Wet Condition	Dry Condition		
Steam Emissions	Yes	No		
Corrosion	Yes	No		
Glassy Phase	> 90 %	> 90%		
Size	< 5 mm	< 5 mm		
Application	Cement making Cement maki			

Dry Pit Slag – New Applications



Jaw crusher + Vertical Shaft Impactor + Screen

Steel Making Slag

Issues :

- Presence of Metal
- Irregular shape
- Wide range of size
- Higher density
- Higher amount of fines
- Expansive Nature

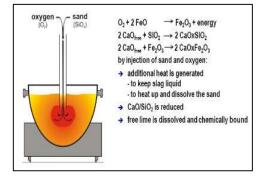
Expansion tendency is due to free lime/periclase pockets in slag, which when crushed to finer sizes, gets exposed and aged naturally.

Existing Solutions

Natural Ageing Storage for land for a period of 1.5 - 2 yrs

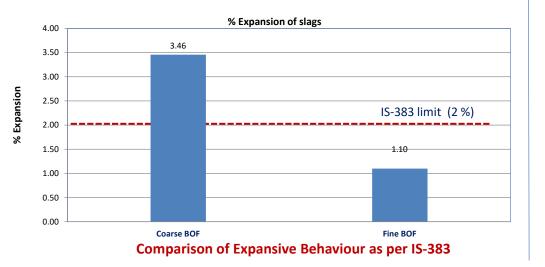
Pressurized Steam Ageing Steam Injection into slag in closed system for 4-6 hrs

Dry and Wet Cycle Aging Frequent water spraying on slag heaps 3 – 6 months


Steam Box Technology Subjecting slag with water and steam in closed box during solidification

Open Steam Ageing Steam Injection into slag heap for 5-7 days

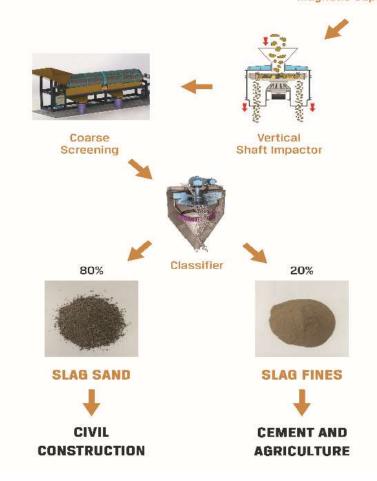
Chemical Stabilization of Molten Slag


Steel Making Slag

Expansive

 \rightarrow

Non- Expansive

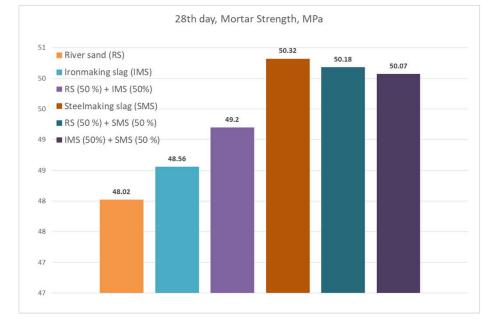

World's First Steel Slag Sand Plant

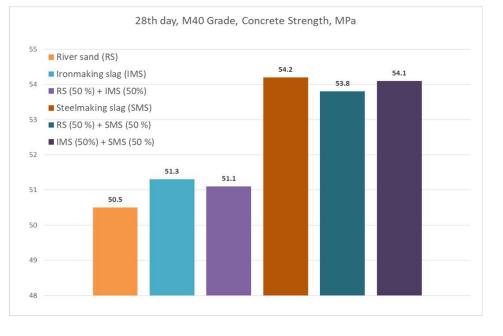
Customised Process

Starts from Steel Melting shop

In-house designed circuit – Assembled Units

No Such Full Scale Set-up Reported


No Rejections


Applications for all components

First of its kind in the World

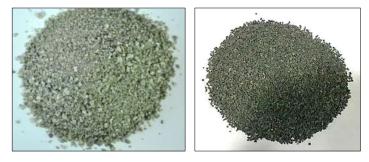
Test Results

Steel slag sand manufacturing unit

Iron slag sand manufacturing unit

Fine Aggregates Available

From Rivers


From Mountains

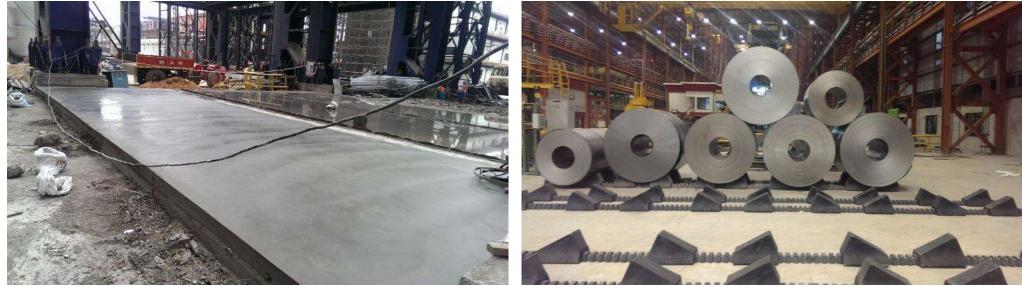
Slag Sand

Eco-Friendy

Saves Natural Resources

From By-Products

Applications of Slag Sand



Advantages

- No Expansion Issues
- Better strength than river sand
- Environmental friendly alternative.
- Controlled Physical and Chemical Properties.
- No deleterious material.
- Available through out the year.
- Graded products to meet specific needs.
- Suitable for Roads, Concrete, Plaster, Mortars, RMC Plants etc.

Applications

- Plain Concrete
- Reinforced Concrete
- Standard Ready-Mix Concrete
- Dry Lean Concrete
- Pavement Quality Concrete
- Rapid-setting Concrete
- Asphalt Concrete

Flooring for heavy loads

Used in all three Layers

NH-67: Hosapete to Ballari: Total Length 95 KM Concrete road made up of slag aggregates (Fine and Coarse)

Steel Slag Usage in Roads

Ministry of Steel Sponsored Project

National Guidelines released on 29th June 2024 by CRRI

Approved to be used as aggregates in Roads

GUIDELINES FOR PROCESSING AND UTILIZATION OF STEEL SLAG AS PROCESSED STEEL SLAG AGGREGATES FOR ROAD CONSTRUCTION

S.No.	Properties	Typical Range of Processed Steel Slag Aggregates		Permissible Limits for Processed Steel Slag Aggregates			Test Method	
		BOF	EAF CONA	CONARC	C Surface Course (DBM, BC, DLC and PQC)	Base (WBM & WMM)	Sub-base (GSB)	_
1	Aggregate Impact Value % (Dry Condition)	10-22	12-20	10-20	Max. 27	Max.30	Max.30	IS 2386 (Part IV)
2	Aggregate Impact Value % (Wet Condition)	12-24	14-18	12-16	NA	Max. 30	Max. 35	IS 5640
3	Los Angeles Abrasion Resistance, %	11-18	10-14	10-14	Max. 30	NA	NA	IS 2386 (Part IV)
4	Water Absorption Test %	1-2	0.5-1.5	0.5-1.5	Max. 2	Max. 2*	Max. 2	IS 2386 (Part III)
5	Specific Gravity	2.93-3.20	2.95-3.4	2.95-3.4	Permissible Range 2.9- 3.45			IS 2386 (Part III)
6	Combined Flakiness & Elongation (FI+EI) Index %	8-22	10-21	10-21	<30	<30	<30	IS 2386 (Part I)
7	Soundness Test - Sodium Sulphate in %	0.2-1.8	2-4	2-4	< 12	< 12	< 12	IS 2386 (Part V)
	Magnesium Sulphate in %	0.3-2.1	3-5	3-5	< 18	< 18	< 18	
8	Stripping Value Test % (Bitumen coating retention)	98-99	99-99.5	99-99.5	Min. Retained coating 95	NA	NA	IS 6241
9	Iron unsoundness ** %	Nil	Nil	Nil	< 1	< 1	< 1	IS 383 (Annexure D)
10	Iron Stain Index Test*** (Staining from Iron compound)	0-40	0-40	0-40	<60***	NA	NA	ASTM C 641-07
11	Volumetric Expansion Test, %,	1-2	0.8-	1.40	< 3			EN:1744-1

Table 9.1: Engineering Properties of Processed Steel Slag Aggregates for Road Application

Benefits of Steel Slag Aggregates

- Reduction in overall Bituminous Road Thickness by 30 to 40 %
- > Conservation of around 80000 tons of Natural Aggregates for construction of 1 Km six lane road
- **>** Reduction in construction cost by 40 to 45 % in Bituminous and Cement Concrete Steel Slag Road
- Improved Durability of Road by 4 to 5 times
- > Negligible Maintenance cost
- > Reduction in Green House Gases Emission by 48 % by substituting natural aggregates with processed steel slag aggregates
- > Cheaper, economical option of Natural Aggregates for Road Construction

Saves Cost and Environment

On-Site Applications

Steel Slag being tested to build national highways

1 min read • Livemint Updated: 15 Mar 2023, 07:26 PM IST

This initiative will help to address challenge of shortage of material used in development of the national highways, and could replace natural aggregates such as sand, gravel, or crushed stone with the waste material from the steel industry, road transport ministry said

The NHAI permitted CRRI to construct 1 km long trial patch in Raigarh district for PQC of Panvel – Indapur section of NH 66 near Mumbai where 100% natural aggregates were replaced by steel slag derived aggregates. The results from the trial have been encouraging.

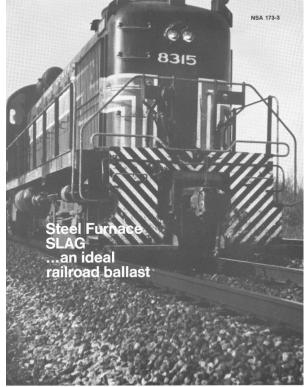
Slag Bound Roads



Building of self-hardening road pavings

A special advantage of slag mixtures resides in their hardening by carbonic and/or hydraulic reactions without using a binder like cement or bitumen.

Stone Blocks and Breakwaters



Railway Ballasts

High angle of internal friction and high aggregate interlocking characteristics

- Steel Slag complies with the requirements of:
 - American Railway Engineering Association (AREA)
 - Federal Specification SS S 449
 - Brazilian Standard Association (ABNT) NBR 5564
 - Canadian National Railways (CNR) Specification 12 22, Slag Ballast
 - EAF Slag selected for use as railway ballast in Canada

Conclusions

- Indian steel plants should recognize that if they are to remain competitive they must take a fresh look at ways to minimize waste/prevent pollution arising from their production processes and supporting activities.
- In present scenario, Steel plants have to aim for converting the waste management system into a profitable business to achieve "zero waste concept".
- Proper management of waste and its effective reutilization will convert waste into wealth.
 Therefore, waste treatment and its reuse be made as an essential process step in almost all integrated steel plants.

