STRUCTURAL REHABILITATION

# सरचनात्मक पुनवसि शून्य से अनत तक हिंदी में DR. GOPAL RAI











# Nation Building with Rehabilitation

Dr Gopal Lalji Rai (Ph.D) Director

**Dr Rachana Gopal Rai**(мртн) Chairmen

# **Dhirendra Group of Company (DGC)**



21st SHM Consultants Pvt. Ltd.

R & M Rehab Care

WT DOG

# What is ?



- 40 year old Indian Railway PSC Girder
- 55 year old Pull mithai ROB
- Major Rehabilitation of abundant Railway Station Building

Note all are photos and case study done by DGC

### Strengthening Techniques



#### **Strengthening Techniques**



Punching shear

**External Post-Tension** 

•





# Fiber Reinforced Polymer Composites









# **Reinforcement Woven fiber & Uni- Directional Fiber**





## Flexural / Shear Strengthening



# Carbon Laminate



External Prestressing - 21 June 2006 - 8



## Shear Strengthening





Moment enhancement - 21 June 2006 - 9



Junction Confinement



Confinement







Non-Prestressed Laminate - 21 June 2006 - 10

Anchor plate system





# **Bridge Below The**



# CONDITION OF BRIDGE







#### Strengthening of Mumbai International Airport Runway Bridge









**Strengthening of Beam By Double Wrapping** 



ANCHORAGE ON THE SLABS UPTO 300mm On Both Sides



Cross Section Of the Girders are 1.5m x 1m



## WATER FLOW OF TUNNEL - MITHI RIVER





# VERY COMPACT SPACE

# HARDLY 1 METER WORKING AREA







# STRENGTHENING OF BOW-STRING Bridge

#### INTRODUCTION

- This is bow string Girder Bridge built for two lane traffic.
- There are two spans each of 42m long and built to avoid train traffic at the junction.
- The traction wires are running below the bridge.
  - One half of the bridge was built in full away from its alignment, then it was shifted and placed in position. Total weight of the structure moved was 750tons.



# **OBSERVATIONS**





Spalling of concrete in the deck slab



Cracks on hangers.



#### Arch



Cracks and delamination of cover concrete on Arch member

#### **Expansion joints**



Condition of expansion joint.

# INSTRUMENTATION

Static Method: To find out the deflection of the Girders, Linear potentiometers will be installed at bottom flange of girder to monitor the deflection which is caused by Loaded Trucks.

Dynamic Method: To find out the Natural Frequency of the Structure,
Dynamic load tests will be performed to calculate he Natural Frequency.





# **DESIGN INSIGHTS**

□ In this bridge strengthening of each structural member is done using various techniques of FRP methods.

■ Firstly, the **hangers (tension member)** are treated by groove laminates and are confined by CFRP Wrap.

• Secondly the **arch** which is a compression member is provided confinement by CFRP wrap.

□ Thirdly the **Tie Girders** are strengthened under flexure and shear by Pre-stressed laminates and U-shaped CFRP wraps.

□ Lastly the **cross girders** are strengthened by CFRP Wrap.

• Apart from all these retrofitting technics the existing non-functional bearings and expansion joints are replaced

# METHODOL OGY

#### Surface Preparation and Treatment to corroded reinforcement







#### **Bond Coat Application**

Section Re-casting using Micro concrete





# Grouting low viscous epoxy grout

## Application of Primer Coat









## Providing Groove laminate in Hangers

Confining Arch of Bow String Bridge



#### **Application of Pre-stressed laminates**



Application of Anti Carbonation aliphatic acrylic coating





st hening K C test Load **Reduction** In deflection :26% Reduction In requency  $\sim$ 



## **INDIAN RAILWAYS PSC GIRDER**



Client : Indian Railway 40 year old bridge PSC I girder developed cracks





# **Surface Preparation**











# Before Strengthening test (Initial test)



### **Rebound hammer**



UPV



## Strain Gauge





#### Potentiometer





#### **Cleaning Reinforcement**



## Rust protection

#### **Rust cleaner**



## Sealing of crack with resin









Strengthening at concrete location before prestressed begin



End block to prevent slippage



M



Carbon laminate after Prestressed

Fix end







**Resin Primer** 









Results Deflection recover by 65% Natural Frequency improve 90%

Speed restriction removed resulted in saving of 17 min Before strengthening speed restriction was 20kmph

Now after strengthening 100 kmph





# **Bridge Below The**



# CONDITION OF BRIDGE






### Strengthening of Mumbai International Airport Runway Bridge









**Strengthening of Beam By Double Wrapping** 



ANCHORAGE ON THE SLABS UPTO 300mm On Both Sides



Cross Section Of the Girders are 1.5m x 1m



### WATER FLOW OF TUNNEL - MITHI RIVER





### VERY COMPACT SPACE

### HARDLY 1 METER WORKING AREA







### STRENGTHENING OF BOW-STRING Bridge

#### INTRODUCTION

- This is bow string Girder Bridge built for two lane traffic.
- There are two spans each of 42m long and built to avoid train traffic at the junction.
- The traction wires are running below the bridge.
  - One half of the bridge was built in full away from its alignment, then it was shifted and placed in position. Total weight of the structure moved was 750tons.



# **OBSERVATIONS**





Spalling of concrete in the deck slab



Cracks on hangers.



### Arch



Cracks and delamination of cover concrete on Arch member

### **Expansion joints**



Condition of expansion joint.

### INSTRUMENTATION

Static Method: To find out the deflection of the Girders, Linear potentiometers will be installed at bottom flange of girder to monitor the deflection which is caused by Loaded Trucks.

Dynamic Method: To find out the Natural Frequency of the Structure,
 Dynamic load tests will be performed to calculate he Natural Frequency.





### **DESIGN INSIGHTS**

□ In this bridge strengthening of each structural member is done using various techniques of FRP methods.

■ Firstly, the **hangers (tension member)** are treated by groove laminates and are confined by CFRP Wrap.

• Secondly the **arch** which is a compression member is provided confinement by CFRP wrap.

□ Thirdly the **Tie Girders** are strengthened under flexure and shear by Pre-stressed laminates and U-shaped CFRP wraps.

□ Lastly the **cross girders** are strengthened by CFRP Wrap.

• Apart from all these retrofitting technics the existing non-functional bearings and expansion joints are replaced

### METHODOL OGY

### Surface Preparation and Treatment to corroded reinforcement







### **Bond Coat Application**

Section Re-casting using Micro concrete





# Grouting low viscous epoxy grout

### Application of Primer Coat









### Providing Groove laminate in Hangers

Confining Arch of Bow String Bridge



#### **Application of Pre-stressed laminates**



Application of Anti Carbonation aliphatic acrylic coating





st hening K C test Load **Reduction** In deflection :26% Reduction In requency  $\sim$ 



# STRUCTURAL STRENGTHENING OF PULMITHAI BRIDGE, DELHI



# Pul mithai Bridge





## **Difficulties on Site**

- crowded during days, it was difficult to work inside the pulmithai rob no. 5 during these days.
- fixing of shuttering for concreting in **congested space** was difficult.
- erection of scaffolding in a small portion was not possible.
- scaffolding need to erected in large portion and then shifted to next position.
- every day scaffolding need to be erected in the morning & removed in the the evening, cannot be left overnight cause of slums area.
- steel bending & cutting dificult congested working space.



# Photos of Trouble working due to these objects





## Before strengthening of columns & Beams



due to heavy loaded vehicles pass through over the bridge , due to which cracks had been generated in the beams & columns.



### Structural cracks on beam & column





## Plan drawing for strengthening of Work





# **Surface Chipping**

roughening existing concrete surface and/or removal of any plaster or other foreign material by chipping / hacking with chisel and hammer or by mechanical chipper machines.





## RUST REMOVAL

cleaning the rusted reinforcement and exposed surface by wire brush, mechanical device or any other established method and applying rust removing solution of approved make and quality with cotton waste swap to reinforcement and allowing to dry the same for 24 hours,





## Anti corrosive

applying two coats of anticorrosive epoxy phenolic rebar protective system ip-net rb or equivalent of approved make and quality comprises of resin and hardner mixed in equal proportion by volume with minimum 9-10 hours between the coats.





## DRILLING FOR MAIN BAR GROUTING

• **TO DRILL INJECTION MORTAR** IS USED WITH THE APPROVED SYSTEM COMPONENTS FOR REBAR CONNECTIONS.





## **Steel fixing & shear key**

- CUTTING LENGTH OF MAIN BAR = 5.4M ( HT. OF COLUMN-4.7M, LAPPING 500 MM, 100 MM DRILL IN BOTTOM & TOP), 10 MM OF DIA. OF BAR
- TOTAL SHEAR PIN ON ONE COLUMN-72 NOS. (500MM C/C SPACING),12MM DIA.OF BAR OF 250 MM LENGTH SHEAR KEY).





## **Bondcoat & shuttering**

- APPLYING A PRIMING CUM BONDING COAT OF TWO COMPONENT EPOXY RESIN AND CURING AGENT IN 2:1 PROPORTION BY WEIGHT FOR JOINING OLD AND NEW CONCRETE AS PER TECHNICAL SPECIFICATIONS OF MANUFACTURER.
- FORMWORK DESIGNED WITH PROPOSED MATERIALS (TO BE APPROVED PRIOR TO MAKING) SHALL BE ABLE TO RETAIN ITS SHAPE, LINE, DIMENSION, LEVEL WITHIN THE ALLOWABLE LIMITS OF VARIATIONS.
- MAKE FORMWORK JOINT TO BE WATERTIGHT USING POP.



## Micro concrete



- FREE FLOW HIGH STRENGTH NON SHRINK MICRO CONCRETE M-35
  USING SINGLE COMPONENT CEMENT MICRO CONCRETE SHRINKAGE
  COMPONENTS AND ADDED WITH 100% BY WEIGHT SATURATED DRY
  STONE DUST WATER CEMENT RATIO SHALL BE MAINTAINED PROPERLY
  AS PER MANUFACTURES.
- MICROCONCRETE MIXING WITH 6 MM DOWN SIZE AGGREGATES IN THE RATIO OF 1 PART MICRO CONCRETE WITH 0.3 PART OF AGGREGATE





## **De-shuttering & curing**

### DE-SHUTTERING OF FORMWORK AS WELL AS THE **TIME PERIOD TO REMOVE THE FORMWORK** FROM COLUMN, WALLS, BEAM ETC.



- SPECIFIED STRENGTH OF
   CONCRETE
- GRADES OF CONCRETE
- ATMOSPHERIC TEMPERATURE
- AS PER IS 456 2000 CONCRETE SHOULD NOT BE CURED LESS THAN 7 DAYS.





## Polymer work on beam

### **15 MM THICK POLYMER MORTAR** TO LOAD CARRYING R.C.C MEMBERS IN TWO LAYERS IN PROPORTION OF 1:5:15



# METHODOLOGY OF CARBON FIBER WRAPPING FOR COLUMNS & BEAMS









## **Grinding work & Forming radius corners**

- plain surfaces.
- to remove all the sharp corners.
- form at least a of min. 20 –
   25mm radius.





- to promate adhesion & prevent the surfaces.
- primer is a 2 component base materials: mixing proportion - 1) base - 4 kg

2) hardener - 2 kg

 application of primer allow the material to cure for at least 24 hours or overnight.





## Levelling putty

 applying epoxy putty over the concrete surface
 including mixing to the proportion as specified by the manufacturer.

 to fill the porosities to make it smooth & uniform in nature.




# **Carbon fiber wrapping**

- non metallic composite fiber wrapping system comprise of unidirectional carbon fiber sheet (400 GSM) and compatible saturant by wet layup.
- using tamping roller to avoid any air voids on fiber wrapped.





# Fixing carbon anchors & Applying top coats

- fixing carbon
  fiber anchor
  including drilling
  hole in the base
  concrete fixing
  the anchor
  using epoxy
  50X55
  systems.
- it gives a locking effects from all 360°.





# Applying of carbon laminateS using adhesive

adhesive is used to
 bond precured frp
 laminate.







# Application of fire protective coating

to provide fire protection coat post strengthening on the structural member to fire proof the members.





### Our teams

#### PARWEZ HASAN

SITE-INCHARGE

### RAGHAVENDRA KUMAR

#### SITE-ENGINEER

# VIJAY THAKRE









### Our teams

DHEERAJ YADAV

**BANTI RAI** 

















# DGC R&M INTERNATIONAL PVT LTD SITE NAME :- UDAIPUR STN BUILDING (TRIPURA)

- Retrofitting of existing crack structure using CFRP with 40 % laod capcity
- Micro piling and slab cast for making plate action
- Sheet piling to confine staion builing

#### Consultant : Eng. Amandeep Garg



### **BEFORE STREGTHENING**

# LOCATION – UDAIPUR STN BUILDING

# CONDITION OF SITE PIC SHOWING BASE OF STN BUILDING







# AFTER WALL BRECKING & CHIPPING







Temples (4)



#### Residential buildings (180)









Hospitals

(4)



Commercial building (189) Education Institute (5)

Heritage structure (5)

### We Thank the Govt. Of India & FICCI for Recognizing us For

**Process Innovation- Construction Chemicals** By Govt of India and FICCI







Event Inaugrated by The President of India Dr. Gopal Rai Reciving the Award From Secretary Shri Pranab Mukherjee Shri K. Jose Cyriac

### Process Innovation-Construction Chemicals 2013





inaugurated by Shri Narendra Modi (Chief minister of Gujrat)

By Govt of India and FICCI



1 10

### Quality crown award at London November 2013





díc

# Best Entrepreneur of year 2014, in UK







Recognition at IIBE silver jubilee Function by Shri Nitin Gadkari (Minister) To Dr Rachana Rai (Director)



### CIDC Vishwakarma award 2015 for best project

# Construction Industry Development Council (CIDC) 19<sup>th</sup> CIDC ANNUAL

7th CIDC VISH

**STEIN AUDI** 

AJESH GOEL

DR. I



NAVIN RAHEJA

R RINTIN DOR.





# Celebrating People in Stainable Development

ICONS - SPACE

ber 1 7 Singapore

presents

aces

ACCERCICIO ANAL







Recognition at Dubai for 40/40 Most influence leaders, Dubai, 2018

- 21 June 2006 - 97











### **Board of Directors**

# ्रुरुब्रह्मा गुरुविष्णु गुरुर्देवो महेश्वरः । गुरुर्साक्षात् परब्रह्म तस्मै श्री गुरवेनमः ॥















### " Do engineering for betterment of country "

Dr Gopal Rai

- 21 June 2006 - 102

#### **QUESTIONS?**

DR. GOPAL RAI



