Revolutionizing Road Infra with Modern Equipment, Technologies, Sustainable Materials and Policy Guidelines

February 29th - March 1st, 2024, Manekshaw Centre, New Delhi

International Road Federation India Chapter

Tools and Techniques for Understanding Bituminous Mixes and Pavement Performance

Professor Department of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai, 400076

Asset Acquisition: Cycle of Thought Process

BEFORE

- Assessment, Evaluation, and Due Diligence
- Condition of pavement, and expenditure

AFTER

- Repair, preservation and maintenance
- New technology and techniques to extend life
- Valuation for O&M

Pavement Life-Line Situation

Maintenance, Rehabilitation and Reconstruction

Techniques and Technologies

- I. Milling and Recycling
- 2. Additives as Performance Enhancer
- 3. Preservation
- 4. Structural Analysis: Remaining Life
- 5. Best Paving Practices
- 6. Training and Tools: Equipped Workforce
- 7. New Mixes and Methods
- 8. Data Collection and Management

Practice/Process which can help to minimize life cycle cost and bring long lasting, durable, and sustainable highways.

Assessment of Pavement Condition: Deal on Table

- New construction/old construction
- Is condition of pavement good?
- What is life of pavement?
- What would be expenditure cycle?
- Equation on cost and benefits

Understanding health of pavement is one of the important factors for wise investment.

Structural Condition of Pavement: Falling Weight Deflectometer (FWD)

Remaining life of pavement/structural condition of pavement.

You can be fooled with this tool (outcome can be proportional to expenditure/cost)

Reliability and Confidence on data and outcome.

Functional Condition of Pavement: Network Survey Vehicle (NSV)

Ridding quality and distresses on a pavement.

There is no logical presentation of the data, except dumping data on agency, and making scretch their head.

Effective use of data and utilization of outcome in pavement management.

Reliability and Confidence on data and outcome.

Data Collection and Management

- I. NSV
- 2. Regular distress survey

Integration is key

- 3. Pavement tools
- **4. FWD**

Milling and Recycling

- Require on many projects
- Availability of RAP materials
- Considering for maintenance rehabilitation

Use of milled RAP can help to optimize cost and bring better life.

Build Asset

Additives as Performance Enhancers

- Polymer modified bitumen
- Hybrid CRMB
- Hybrid PMB
- Waste Plastic
- Innovative Products

Purpose: Good performance, optimize cost, reduce maintenance expenditure. Confidence building and field performance

Unmodified bitumen sometimes not suitable for heavy traffic, and high temperature locations.

Bitumen Grade System

Pavement Preservation: Minimize O&M Cost

- Implement technology for preservation of pavement
- Minimize expenditure
- Enhance life
- Few Technology
 - Micro-surfacing
 - Thin Overlay
 - Innovative Solutions
 - Combination of recycling

Best Paving Practices

- Mix design
- Plant operation
- Paving, rolling
- Continuous material supply
- Plant capacity
- Demand and supply

Good materials with poor paving practices can lead to serious consequences ¹⁴

Training and Tools

- Milling and Recycling
- Additives
- Preservation
- Structural analysis
- Best Practices
- Training and Tools

With change in traffic, materials, technology, and increase in cost of O&M, it is imperative that agencies embrace training and tools to upgrade themselves.

New Mixes and Methods

- Infrared Thermal Camera
- Intelligent Compaction
- Thin Overlays
- Inline paving (both DBM-BC together)
- Stone Matrix Asphalt
- Superpave mix design
- Performance of Mixes

Practice/Process which can help to minimize construction cost and minimize life cycle cost.

Superpave Mix Design

				20 Year Design	Compaction Parameters		
<image/>	Ram Pressure 600 kPa			ESALs (in millions)	N _{intial}	N_{design}	N _{maximum}
				< 0.3	6	50	75
		00/150 mm		0.3 to < 3	7	75	115
				3 to < 30	8	100	160
				≥ 30	9	125	205
	30 gyrations/minute		At OBC We c Moist	heck Volumetric Para ture Damage \rightarrow Tens	ameters (ile Streng	→ <mark>OBC</mark> (i.e.VMA gth Ratic	,VFA) o (TSR)
		Does it simulate the field compaction practice ?					
		Does it consider mix performance ?					

Time to upgrade mix design considering traffic/climatic conditions.

Hamburg Wheel Tracking Test (HWTT)

All bituminous mixes may not be suitable

Dr. Dharamveer Singh Professor Department of Civil Engineering Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Mobile: 976-901-7304, E-mail: dvsingh@iitb.ac.in