Revolutionizing Road Infra with Modern Equipment, Technologies, Sustainable Materials and Policy Guidelines *February 29th - March 1st, 2024, Manekshaw Centre, New Delhi*

UHPFRC Technology for Sustainable Development Mr. Satish Navanale M/s LONGSPAN STRUCTURES PVT LTD.

www.indiairf.com india@irf.org.in

Contents

- Introduction to UHPFRC Technology
- Benefits of UHPFRC Technology
- Areas of Application
- UHPFRC Technology in India
- Sustainability with UHPFRC Technology
- Case Study 1 : Bridge with 102.5 m Span (STEEL Vs UHPFRC)
- Case Study 2 : Bridge with 102.5 m Span (Conventional Vs UHPFRC)
- Prestressed Precast UHPFRC Sheet Piles
- UHPFRC Application in Development stage Floating Bridges

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

Quick Background on Concrete Technology

EVOLUTION OF CONCRETE TECHNOLOGY

Introduction

UHPFRC is a new generation of cement-based construction material tailored for very High Compressive Strength, High Ductility, Durability and Sustainability based on:

- □ Micro-scale optimization of fine and ultrafine aggregates (silica fume and sand),
- □ Lower content of water to cement ratio
- □ Added superplasticizer and reinforcement with high-strength steel fibers.
- Concrete Grade 150/165 & above.
- With usable structural ultimate tensile strength (> 8 MPa) and ultimate flexural strength more than 30 MPa.
- at least 4-6 times stronger than normal concrete (in compressive strength)
- 10 times more fatigue Strenght as comparad to Normal Concrete
- Better Impact Resistance due to high Strenght

Steel Fiber distribution in UHPFRC

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

Advantages of UHPFRC Bridge Construction

Areas of Application

- Currently most promising Field of Application of UHPFRC is Infrastructure Bridge girders, Sheet Piles, Wearing coat, etc.
- Building & industrial Infrastucture
- Offshore Structures
- Defence Structures.
- Thermal and Nuclear Power Plants
- Architectural Facades and finishes.

UHPFRC technology in India

		LIST OF UHPFRC Pr	oject Execute	d and Under	Progress			
Bridge	Bridge Name	Authority	Span Arrangement (m)	Total Length		Status	GIRDER Type	
1	Lotur Pr			(11)		Completed		
1			2 X 55.5	22.0	16	Completed	BBG2400-55.5m	
2	Manad Br. CH161+400	PWD NHAI DIVISION	1 X 33.9	33.9	16		BT1500-33.9m	
3		PVVD NHAI Division	2 x 30	60	16		BT1500-30m	
4, 5	Samruddhi Bri. CH531+068 &107	MSRDC	1 X 52	52	35		UBG2250-51.8m	
5,6	Samruddhi Br2. CH531+968	MSRDC	1 x 52	52	35	Completed	UBG2250-51.8m	
7	Taloja Creek Br.	PWD Maharashtra	2 x 33	66	8.25	Completed	BT1500 - 32.6 m	
8	Dharmapuri- 145+635	NHAI	1 x 102.6	102.6	16	Completed	UBG4000-102.6m	
9	Dharampuri- 137+979	NHAI	1 x 60	60	32	Completed	UBG3000-57.5M	
10. 11	Dharmapuri- 142+465 (MCW)	NHAI	3 x 35	105	21	Completed	BT1500-34m	
,	Dharmapuri- 142+465 (SR)	NHAI	3 x 35	105	21.6	Completed	BT1500-34m	
12	Dharmapuri- 138+875	NHAI	1 x 60	60	16		UBG3000-57.5M	
13	TNT - RTO Flyover Span 1	PWD NHAI Division	1 x 65	65	17.2	Completed - Erection Pending	UBG3000-65M	
14	TNT - RTO Flyover Span 2	PWD NHAI Division	1 x 65	65	17.2	Completed - Erection Pending	UBG3000-65M	
15, 16, 17	TURBHE ROB - Flyover	PWD Maharashtra	38 x 30	1140	11.6289	In Progress	BT1500 -30m	
19 10	Vehicular Overpass Chandni Chowk (Main span)	NHAI	1 x 57	57	38.6	Completed	UBG2250 - 57m	
10, 19	Vehicular Overpass Chandni Chowk (Ramp)	NHAI	6 x 23 - 35m	193	16	Completed	BT1500 -30m	
20	Pandoh Nerchwok 206+650	MoRTH	1 x 32	32	25	In Progress	BT1500 -32m	
21	Pandoh Nerchwok 207+270	MoRTH	1 x 20	20	25	In Progress	BT1500 -20m	
22	Pandoh Nerchwok 209+510	MoRTH	1 x 39	39	25	In Progress	BT1500 -39m	
23	Raipur, Chhattisgarh 155+340	MoRTH	2 x 35	70	12.9	In Progress	BT1500 -35m	
24	Raipur, Chhattisgarh 147+970	MoRTH	4 x 35	140	12.9	In Progress	BT1500 -35m	
25	Raipur, Chhattisgarh 133+090	MoRTH	3 x 47	141	12.9	In Progress	UBG2250-47m	
			1 x 35	35	12.9	In Progress	BT1500-35m	
26	DHARAMPURI - 145+902	NHAI	1 x 34	34	32	In Progress	BT1500-34m	
27,28	DHARAMPURI - 124+630 (MCW)	NHAI	2 x 30	60	21	In Progress	BT1500-30m	
	DHARAMPURI-124+630 (SR)		2 x 30	60	21.6	In Progress	BT1500-30m	
29	DHARAMPURI - 127+538	NHAI	2 x 29	58	32	In Progress	BT1500-29m	
30	DHARAMPURI - 129+506	NHAI	1 x 35	35	32	In Progress	BT1500-35m	
31	DHARAMPURI - 141+350 - Flyover	NHAI	2 x 32.5	65	22	In Progress	BT1500-32.5m	

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

		LIST OF UHPFRC Pr	oject Execute	d and Under	Progress		
Bridge No.	Bridge Name	Authority	Authority Span Total Length Arrangement (m) (m)		Total Width (m)	Status	GIRDER Type
	DHARAMPURI - VUP Projects		.	(,	width (in)		
32	Ch. 119+160	NHAI	2 x 10.5	22	21.5	In Progress	IB850 - 21.5 m
33	Ch. 136+400	NHAI	2 x 10.5	22	21.5	In Progress	IB850 - 21.5 m
34	Ch. 152+700	NHAI	2 x 10.5	22	21.5	In Progress	IB850 - 21.5 m
35	Ch. 131+300	NHAI	2 x 10.5	22	21.5	In Progress	IB850 - 21.5 m
36	Mumbra Bridge overlay	PWD Maharashtra	50 x 30	1500	15	Completed	-
37	INDORA FLYOVER - NAGPUR	NHAI	VARIOUS spans brid	of 60 m, 80m and ge length of 5950	90 m with total m	In Progress	Various
38	Thirunavaya Bridge, Kerala	RBDCK, Govt of Kerala	13 x 62	806	11	In Progress	mUBG3000
39	VUP on Solapur Hydrabad Highway (302+050)	NHAI	2 x 20	40	2 x 16	Completed	BT1500 - 20m
40	Extension to Major Bridge on Solapur Hydrabad Highway (322+450)	NHAI	2 x 32.24	64.48	3.5	Completed	BT1500-30m
41,42	Bridge at Ch. 175+075	TIPL - NHAI	1 x 55	55	2 x 16	In Progress	UBG2250
43,44,45,4 6,47,48,49 ,50	8 Nos of Major Bridges on Kolhapur- Ratnagiri 4 Lane Highway	NHAI				In Progress	BT1500-37.5
51,52,53,5 4	Missing Link Project on Mumbai Pune Expressway.	Navyuga - MSRDC	16 x 25 + 35	435	24.95 x 2	In Progress	BT1500-25m
55,56	2 Bridgs on Mumbai Goa Highway	MoRT&H	3 x 37.5	112.5	16 x 2	In Progress	BT1500-37.5
57	Taloja Creek Br. (New Reconstruction)	PWD, Maharashtra	2 x 67.06	134.12	13.55	In Progress	UBG3000 - 66.06
58	Taloja Creek Br.	PWD Maharashtra	2 x 33	66	8.25	In Progress	BT1500 - 32.6 m
59	Bhoj Morbe Pkg. 17 Major Bridge	NHAI	2 x 21.25	95	3 x 31.76	In Progress	BT1500 - 32.6 m
60	FORMULA 3 Race track Building	Private					
61	Marwah Towers Arches	Private					
62, 63	Firodia Township Bridges	Private					

UHPFRC PROJECTS IN INDIA AS ON DATE = 63 NOS **COMPLETED PROJECT TILL DATE** = 18 NOS

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

India's First UHPFRC Bridge – May 2021

International Road Federation - India Chapter www.indiairf.com | 😫ndia@irf.org.in

India's First UHPFRC Bridge – May 2021

Alignment and Post-tensioning

Completed Photo of Bridge

International Road Federation - India Chapter www.indiairf.com | Schula@irf.org.in

Interchange Structure - Chandni Chowk (Pune)

UHPFRC is Cost Effective, Speedy Construction & Sustainable solution for Structures in Urban Environment

International Road Federation - India Chapter www.indiairf.com | Scholaretaing.com

Interchange Structure - Chandni Chowk (Pune)

International Road Federation - India Chapter www.indiairf.com | Schulagerif.org.in

Bridges on Samruddhi Mahamarg

International Road Federation - India Chapter www.indiairf.com | Sindia@irf.org.in

Sustainability with UHPFRC Technology

Sustainability is a concept that has gained significant importance within the construction industry and is here to stay. In a time of
increased focus on environmental challenges and the need to create a more sustainable future, it is crucial to recognize the
significance of sustainability in construction. Particularly, it is important to focus on the materials used, their durability, and
production processes.

HOW UHPFRC help in Sustainability?

- Higher strength parameters of UHPFRC enables sleek and slender components resulting
 - 30 to 40% less consumption of concrete
 - Less carbon footprint with 25% less CO₂ emissions
- Higher Durability results into service life of 100+ years.
- Minimal maintenance is required.
- Lightweight precast component

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

CEPP fib Model Code 2020

(14.5-2)

In order to provide the designer with a indicator to evaluate whether the concrete under consideration has a high potential to build a sustainable structure, the so-called Concrete Environmental Performance Potential (*CEPP*) can be considered. Concrete Environmental Performance Potential (*CEPP*) is defined in Eq. (14.5-2):

JEB-FIP

 $\frac{CEPP}{EIC} = \frac{f_{ck} t_{SL}}{EIC}$

with:

- f_{ck} the characteristic strength of the concrete according to section 14.2 in [MPa] representing the possible performance of the material;
- t_{SL} the potential service life of the concrete under the specific environmental actions to be expected in the lifetime of the building member in years
- *EIC* the environmental impact calculation, expressed as the CO₂-eq. for 1 m³ of concrete.

The *CEPP*-index recognizes the fact that high strength concretes may have high emissions for producing 1 m³ of concrete, but that their strongly improved structural behaviour and durability allow to produce highly sustainable structures. It also

acknowledges that eco-concretes will only be deemed sustainable if they meet the required structural performance and durability criteria. Note that the dimension of the <u>CEPP</u>-index (i.e. [MPa \cdot year/(kg CO₂-eq)] does not hold a physical interpretation, but rather represents the impact of crucial input values on the concrete's environmental performance.

Minimizing the environmental impact by choosing a low CO2-concrete might potentially affect the properties of the concrete. Because in this Model Code, all concrete properties related to structural performance are expressed as a function of the characteristic compressive strength f_{ck} , which is a key parameter for quantifying structural performance and well-known to the designer, f_{ck} is incorporated in the CEPP definition. Reducing the environmental impact by choosing a low CO2-concrete should neither lead to a reduction in durability. In recognition of the significance of durability, the potential service life t_{sl} of the concrete under a given environmental impact is also introduced in the CEPP definition. For concrete production, the most dominant environmental impact results from the greenhouse gas (GHG) emission, including CO2 For this reason the CO2-equivalent is here chosen as the lead environmental impact parameter in the CEPP definition. The CO₂equivalent can be calculated by summing up the CO2-equivalent contribution of the different concrete constituents. The individual CO2-equivalent of each constituent material must be obtained from the specific producer. Further, emissions e.g. resulting from the transport of the raw materials to the concrete plant and emissions resulting from the mixing process etc. should be considered. For more details see Haist et al. [14-yy].

May 2023

Final draft

International Road Federation - India Chapter www.indiairf.com | Sindia@irf.org.in Revolutionizing Road Infra with Modern Equipment, Technologies, Sustainable Materials and Policy Guidelines, February 29th - March 1st, 2024, Manekshaw Centre, New Delhi

fib Model Code for Concrete Structures 2020

De Passivation of Calculat	ion for	Durability	For Ex	posure	to Marine I	Environr	nent	
steel start	Accumption		ſ	Г	()]			
	1 Non cra	cked section		$C_{x,t} = C_t 1$	$-erf = \frac{x}{1}$			
	2 Diffusui	on coefficient Dc c	onstant	- ,1 - 5	$\left(2\left D_{c}t\right \right)$		-	
Code 2020		111		L				
		Grade130	0/145 UHP	<u>20</u>		Grade	50/60 NSC	<u>1</u>
Exposure Class		XS3				XS3		
Cement Content		850	kg/m ³		Cement Content	485	kg/m ³	
Chloride Conc. at Splashing Surface	C.	19.25	kg/m ³		C.	19.25	kg/m ³	
Chloride Threshold Concentration	C. and	2.55	ka/m ³		C	1.46	ka/m ³	
	C /C	0 1324675			C /C	0.075591		
	$1-C_x/C_s$	0.8675325	High	ner CTL	1-C _x /C _s	0.924416		
Maan Comp. Chy. Strongth	f	120	MDo		6	50	MDo	
Concrete Cover	I _{cm}	75	MPa		I _{cm}	75	IVIPa	
	~	10	m ² /c	7	^	75	m ² /c	
Chloride Diffusion Coeff.	Dc	1.00E-13	m/s		D _c	2.00E-12	m /s	
Chloride Diffusion Coeff.	Dc	1.00E-07	mm ² /s	Higher	Dc	2.00E 06	mm ² /s	
Error Function	erf(Y)	0.8675		Impermeat	oility erf(Y)	0.9244		
Error Function Calculated	erf(Y) cal	0.8675	Solv	e .	erf(Y) cal	0.9244	4	Solve
	difference	0.0			difference	0.0		for 0
	Y	1.0638	TOT C		Y	1.2565		and the second
Time (sec)	t	12,426,285,178			t	445,384,084		
De Pas	sivation of	394	vears		De Passivation of	14.12	vears	
stee	el start	27	times Highe	er	steel start			
Conclusion UHPC	is very	much more	e <mark>dura</mark> b	le and s	uperior than	NSC.		

Case Study 1 : Bridge with 102.5 m Span (STEEL Vs UHPFRC)

	Du	ra 1.5 SF					NSC 3	2/40		EC – Embodied Carbon
Density	2420	kg/m3			Density	2350	kg/m3			FF Francisco Frances
EE	3.83354262	MJ/kg	9.278	GJ/m3	EE	0.880	MJ/kg	2.068	GJ/m3	EE – Embodied Energy
EC	0.46844106	kg/kg	1133.674	kg/m3	EC	0.123	kg/kg	289.050	kg/m3	
	N	SC 50/60					Steel bar/s	tructure		
Density	2373.9860000	kg/m3			Density	7850	kg/m3			
EE	1.0471890	MJ/kg	2.486	GJ/m3	EE	29.200	MJ/kg	229.220	GJ/m3	
EC	0.1704154	kg/kg	404.564	kg/m3	EC	2.590	kg/kg	20331.500	kg/m3	
	Dock width	16	m	Longth	102.6	m				EC Reduction
	Deck width	Of a still Discourse	0		102.0					
		Steel I Beam	Composite	ERC DECK Brid	ige					= (4384 – 1948) x 100
		Remark	Pile	Length (m)	Concrete (m3)	Steel (kg)	Mass (ton)	EE (GJ)	EC (ton)	
1	RC Deck (125 kg/m3)	Grade 50/60			410	51300	1026	2518	299	(4384)
2	End-diaphragm (125 kg/m3)	Grade 32/40			19	2400	48	110	12	
3	RC parapet (120kg/m3)	Grade 32/40		205.2	66	7880	162	366	39	
4	Bow String Girder	Steel		102.6	0	1442000	1442	42106	3735	
4.1	Cross Bracing (5% of Steel I Beam)	Steel			0	72100	72	2105	187	= 55 56 %
	Other component (bolt and nut, assume									- 55. 50 %
4.2	3%)	Steel			0	43260	43	1200	112	
							2793	48469	4384	
	Deck width	16	m	Length (m)	102.6	m	_			
		DURA UHPC	Composite	RC Deck Brid	dge					EE Reduction
		Remark	Nos. of Pile	Length (m)	Concrete (m3)	Steel (kg)	Mass (ton)	EE (GJ)	EC (ton)	= (48469 – 19028) x 100
1	RC Deck (125 kg/m3)	Grade 50/60			410	82080	1056	3417	379	<u> </u>
2	End-diaphragm (125 kg/m3)	Grade 32/40			19	3610	49	145	15	(48469)
3	RC parapet (120kg/m3)	Grade 32/40		205.2	66	7880	162	366	39	
	β pcs Dura UHPFRC UBG4000 girder									
4	(188.82 m3/beam)	Dura 1.5 SF		102.6	566	0	1371	5255	642	
4.1	Strands (31.11t/beam)	Steel			0	279990	280	8176	725	-0.74.0/
4.2	Rebar (6.352t/beam)	Steel			0	57168	57.17	1000	110	
							2975	19028	1948	

International Road Federation - India Chapter www.indiairf.com | Sindia@irf.org.in

Revolutionizing Road Infra with Modern Equipment, Technologies, Sustainable Materials and Policy Guidelines, February 29th - March 1st, 2024, Manekshaw Centre, New Delhi

Case Study 2 : Bridge with 102.5 m Span (Conventional Vs UHPFRC)

	Dura 1.	5 SF					NSC	32/40		EC _ Embodied Carbor
Density	2420	kg/m3			Density	2350	kg/m3			
EE	3.83354262	MJ/kg	9.278	GJ/m3	EE	0.880	MJ/kg	2.068	GJ/m3	FF - Embodied Energy
EC	0.46844106	kg/kg	1133.674	kg/m3	EC	0.123	kg/kg	289.050	kg/m3	LL - LINDUIEU LIIEIgy
	NSC 50	0/60		-1			Steel bar	/structure		
Density	2373.9860000	kg/m3			Density	7850	kg/m3			
EE	1.0471890	MJ/kg	2.486	GJ/m3	EE	29.200	MJ/kg	229.220	GJ/m3	
EC	0.1704154	kg/kg	404.564	kg/m3	EC	2.590	kg/kg	20331.50	0kg/m3	
	Deck width	16	m	Length	60	m				
	Deor wain	PSC Girde	er + RC Deck	Bridge	00					
		Remark	Nos. of Pile	e Length (m)	Concrete (m3)	Steel (kg)	Mass (ton)	EE (GJ)	EC (ton)	
1	RC Deck (125 kg/m3)	Grade 50/60			240	30000	600	1473	175	
2	End-diaphragm (125 kg/m3)	Grade 32/40			19	2400	48	110	12	
3	RC parapet (120kg/m3)	Grade 32/40		120	38	4608	95	214	23	
4	Precast T beam - 5 x 30 m (2 Spans)	Grade 50/60		60	305	0	1442	759	124	
4.1	Strands	Steel			0.00	22899	23	669	59	
4.2	Rebar	Steel			0.00	25953	26	758	67	
5	Substructure (Centeral Pier - 150kg / cum)				200.00	30000	505	13/3	159	
							2233	3982	618	EC Paduction
	Deck width	16	m	Length (m)	60	m	_			
		DURA UHPC C	omposite RC	Deck Bridge		-	1			$= (618 - 533) \times 100$
		Remark	Nos. of Pile	e Length (m)	Concrete (m3)	Steel (kg)	Mass (ton)	EE (GJ)	EC (ton)	
1	RC Deck (120 kg/m3)	Grade 50/60			192	23040	479	1150	137	(618)
2	End-diaphragm (100 kg/m3)	Grade 32/40			19	1920	47	96	11	
3	RC parapet (120kg/m3)	Grade 32/40		120	38	4608	95	214	23	
4	3 pcs Dura UHPFRC UBG3000 girder (74 m3/beam	n) Dura 1.5 SF		60	216	0	523	2004	245	
4.1	Strands (11.40 t/beam)	Steel			0	34200	34	999	89	=13.86 %
4.2	Rebar (3.7 t/beam)	Steel			0	11100	11.10	021	20	
							1189	4787	533	

International Road Federation - India Chapter www.indiairf.com | Sindia@irf.org.in

UHPFRC's Sustainability for Interchange at Pune

60m span (UHPC vs HSC)

- 20% lighter 🗸
- 10% less EE ↓
- 12% less CO₂↓
- 12% less GWP
- CEPP Ratio = 97

PRESTRESSED UHPFRC SHEET PILES

Recently, developed new application from UHPFRC is Prestressed Sheet Pile. Which offer superior strength and high durability, enhanced life span. It is an alternative to Steel Sheet Piles.

- Made from grade above 130/145
 UHPFRC.
- Thinner and lighter elements
- Superior strength and durability
- Enhance in load-carrying capacity and resistance to bending and deformation
- High structural integrity and load-

International Road Federation - India Chapter www.indiairf.com | 🖾ndia@irf.org.in

UHPFRC APPLICATION IN DEVELOPMENT STAGE FLOATING BRIDGES

Bridge are constantly being constructed across India. Construction of Permanent bridges in certain cases may be impractical based on objectives, cost & <u>terrain</u> and limitation of construction time.

Examples, where alternative to conventional bridges is required.

Based on Objectives	Based on Cost	Based on Terrain
Military Bridges	Where deep water locations are	Over Lakes and Dam Backwaters
Bridges for carrying utilities.	present, such as backwaters of	Perennial Rivers
Bridges in Emergency conditions	Dams, Pile or well foundations are	River or water bodies with very
Bridges for site access.	impractical to construct.	large depth

The current alternative is floating Bridges which are constructed using structural Steel, which have disadvantages such as corrosion, high cost, low service life and periodic maintenance.

The Bergsøysund Bridge

Nordhordland Bridge

The Evergreen Point Floating Bridge

Thank You

International Road Federation - India Chapter www.indiairf.com | 🖄 hdia@irf.org.in