

Structural Health assessment of Bridges – Safety Audit, capacity augmentation and Life enhancement

Dr.-Ing Saptarshi Sasmal Chief Scientist & Head Special and Multi-functional Structures Laboratory CSIR-Structural Engineering Research Centre CSIR-Campus, CSIR Road, Taramani, Chennai-600113

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

Dr.-Ing Saptarshi Sasmal

Chief Scientist &Head Thrust Area Leader: Structural Health Monitoring and Life Extension Chairman: Director's Technical Cell Editor: ASME J Nondestructive Evaluation Transactions of INAE Journal of Structural Engineering Editorial Board member: Structural Engg and Mechanics

Advances in Computational design

- Rating and priority ranking of bridges
- Instrumentation, response measurement and data synthesis
- Performance evaluation and condition assessment
- Response evaluation under fatigue and dynamic loading
- Structural Health Monitoring
- Retrofitting and upgradation for service life enhancement
- Mechanics of materials and structures

13 April 2024

- About CSIR and Structural Engineering Research Centre
- What is SHM? Importance and relevance
- Sensors, data transfer, acquisition, acquisition and signal processing
- Structural Health Monitoring and health assessment
- Future trend, challenges and activities

CSIR-Structural Engineering Research Centre

CSIR-Structural Engineering Research Centre is a constituent laboratory and a unit of Council of Scientific & Industrial Research (CSIR) under Department of Scientific and Industrial Research (DSIR) coming under the Ministry of Science and Technology of the Government of India.

Infrastructure Laboratories at CSIR-SERC

Advanced Concrete Testing and Evaluation Laboratory

Advanced Materials Laboratory

Advanced Seismic Testing Laboratory

Fatigue and fracture laboratory

Special- and Multi- functional Structures Laboratory Wind Engineering Laboratory

Tower Testing Laboratory

Steel Structures Laboratory

Structural Health Monitoring Laboratory

Theoretical and Computational Mechanics Laboratory

Thrust areas of Research – CSIR-SERC

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

Health monitoring, assessment and prognosis

CSIR-SERC has a world class research laboratory and field testing capabilities/facilities for safety auditing of bridges (of various types, materials and spans) for Railways, Highways, PSUs, State agencies, etc...

- Expertise in carrying out instrumentation, data acquisition, signal processing, field investigations on condition assessment, distress diagnosis, performance evaluation and health monitoring of bridges
- Capacity building for the field engineers on maintenance and management of bridges
- Expertise in carrying out experimental investigations on components or full scale under static, cyclic, fatigue and dynamic loading
- Expertise on development of repair/retrofit/upgradation schemes for old and deteriorated bridges for capacity augmentation and service life enhancement

13 April 2024

Failure of critical structures

I-90 Bridge over Schoharie Creek, New York (1987)

US 51 Bridge over Hatchie River, Tennessee (1989)

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

Failure of critical structures

Sampoong Department Store Collapse due to Overload in Seoul, South Korea (1995).

Nicoll Highway Collapse due to Construction Failure and Overload, Singapore (2004)

I-35 Bridge Collapse in Minessota, US (2007)

Historical Archive of the City Collapse due to Ground Deformation in Cologne, Germany (2009)

13 April 2024

bridge collapse in Goa -2017

bridge collapse near Siliguri

near Calicut, in 2001

Bridge over Alaknanda river near Srinagar Majerhat bridge in southern Kolkata

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

What is SHM?

- •Conventional NDE ⇒ Schedule based Maintenance: Flaws can be induced and become critical between successive maintenance schedules
- •Overwhelming interest pervasive throughout the civil, mechanical and aerospace engineering communities to address the issue
- •Need for real-time detection of damage at an early stage led to the development of the general area of **Structural Health Monitoring**.

Paradigm shift

Regular scheduledriven maintenance Condition-based <u>as-needed</u> maintenance regime

Structural Health Monitoring and assessment

The process of implementing a damage detection and characterization strategy for engineering structures

13 April 2024

Advantages of SHM

Advantages of SHM include...

- Increased understanding of in-situ structural behaviour
- Early damage detection
- Assurances of structural strength and serviceability
- Decreased down time for inspection and repair
- Development of rational maintenance / management strategies
- Increased effectiveness in allocation of scarce resources
- Enables and encourages use of new and innovative materials

Schematic of SHM process

International Road Federation - India Chapter Conference 2024

13 April 2024

Level IV

Detect presence, location, severity and consequences of damage

Level III

Detect presence, location and severity of damage

Level II

Detect presence and location of damage

Level I

Detect presence of damage

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 14

SHM System Components

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 15

Hierarchical Structure of SHM (Rytter, 1993)

Principle and Organization of a SHM System

Types of Sensors

LOAD	Load cells
DISPLACEMENT	Linear Variable Differential Transformer
	Linear Potentiometer
ACCELERATION	Accelerometers
TEMPERATURE	Thermocouples
	Integrated Temperature Circuits
STRAIN	Vibrating wire strain gauges
	Electrical resistance gauges
	Fiber optic sensors

SHM Categories

Passive and Active Monitoring

Mobile laboratory and complete instrumentation

13 April 2024

International Road Federation - India Chapter Conference 2024

Long stroke electro-dynamic Multi-shaker Excitation System

13 April 2024

Performance Evaluation of Railway Bridges

- Electrical Strain Gauges
- Accelerometers
- Linear variable displacement transducers (LVDTs)
- Specially fabricated load cells / Instrumented fixture arrangement
- Data acquisition systems
- Dynamic strain conditioner/amplifier

13 April 2024

24

Instrumentation scheme adopted

Instrumentation scheme adopted

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

Realtime longitudinal force measurement

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 26

Vibration based health assessment

13 April 2024

Live load stress monitoring in masonry arch bridge

Numerical simulations for response prediction

4.357

Wagons placed for Maximum Bending Moment

International Road Federation - India Chapter Conference 2024

CSIR-SERC 29

4.3998

4.5487

13 April 2024

Distress diagnosis and restoration

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 31

External prestressing -shear in anchor zone

- Rehabilitation of distressed PSC structures is usually carried out by adopting external prestressing.
- There is a need to rehabilitate structures in the fast track mode, but adopting the scheme which would ensure performance of the retrofitted structure to its desired level.
- Complicated three-dimensional reaction at the anchor zone in conventional external prestressing scheme has been replaced by simple shear in longitudinal direction in the case of proposed external prestressing scheme.

Re-engineering of Pamban bridge

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 33

Health assessment of prestressed ash pipe bridge

Induced vibration – road bridge assessment

Damage mapping using ultrasonic tomography

Tomographic imaging results and the corresponding experimentally observed crack pattern (schematic sketch) for different damage levels, (a) D0; (b) D1; (c) D2; (d) D3; (e) D4.

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 36

Retrofit of corrosion damaged exterior girders of bridg

13 April 2024

Numerical simulation of masonry arch railway bridge

13 April 2024

Instrumentation and performance evaluation

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 39

Performance evaluation – Post bridge

French era brick masonry arch bridge – life enhancement

13 April 2024

French era brick masonry arch bridge - assessment

Infrared Thermography for integrity assessment

13 April 2024

International Road Federation - India Chapter Comference applied mage of the repaired wall panel CSIR-SERC

Monitoring of Polavaram dam -Acoustic Emission

Integrity assessment of Polavaram dam through Acoustic Emission (AE) and advanced nondestructive evaluation (NDE) Techniques

Challenge: Due to the presence of huge concrete, dense reinforcement and bi-directional prestress conventional NDT&E is not suitable.

Outcomes: An innovative multi-sensor based threedimensional instrumentation strategy for assessing microcracks deep inside the structure

Prestressed trunnion beams in Polavaram Dam

44

FRP applications- need understanding, mechanics and skill sires

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 45

AI-ML for damage classification

13 April 2024

Indigenously developed smart embedded sensor

13 April 2024

International Road Federation - India Chapter Conference 2024

-SERC

Future trend and challenges in SHM

- Output-only methods
- Population based methods
- Data driven models Machine learning algorithms
- Distributed fibre optics sensing for long structures
- Stretchable sensors/bioinspired design
- Vision based sensing
- Optimal sensor placement
- Sensor fault detection
- Model based techniques Efficient and accurate computational models
- Material models to predict strength based on current microstructure
- Use of IOT platforms for wireless sensing and data transfer

Mission Mode Project : Structural Health Monitoring

Actuator PZTs Sensing PZTs

RTRM at extended mode DI

<u>Refined baseline-free</u> damage identification in thin walled structures using Lamb wave propagation (SERC)

Development of Femto-second laser based FBG inscription for application in SHM (CGCRI)

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 49

Way forward

Establishment of Centre of **Innovation** & Manufacturing **Eco-system for Sensors (CIMES)**

2022-2027

International Road Federation - India Chapter Conference 2024

CSIR-SERC

50

Baseline-free SHM techniques for detection, localization and characterization of damages in varied types of infrastructure

- Data-driven damage localization and guantification methods for SHM using AI techniques
- Development of **Digital Twin for critical structures** (for example: bridges)

सत्यमेव जयते

THANK YOU

Dr.-Ing Saptarshi Sasmal

ChiefScientist & Head Special and Multi-functional Structures Laboratory CSIR-Structural Engineering Research Centre CSIR-Campus, CSIR Road, Taramani, Chennai-600113 Email: saptarshi@serc.res.in

sasmalsap1@gmail.com

Phone: 044 2254 9210 9791165705

13 April 2024

International Road Federation - India Chapter Conference 2024

CSIR-SERC 51

CSIR-SERC can significantly contribute towards safety auditing, capacity augmentation and service life enhancement of bridges.

- Full scale field testing of the bridges
- Condition assessment and non-destructive testing of bridges
- **Complete instrumentation** of super- and sub- structure, response measurements of in-service bridges under vehicular traffic
- **Performance evaluation** of bridges under service load conditions as well for increased vehicular load demands
- **Distress diagnosis and damage assessment** of bridges to identify weak zones in the bridge structures based on static and dynamic measurements
- Capacity augmentation of bridges due to the increased demand
- Life enhancement (repair, rehabilitation, retrofitting, and strengthening) of bridges
- Complete and long term **structural health monitoring** of bridges (SHM)
- **Overall design and proof checking** of all types of bridges

Imparting training to the engineers on inspection, maintenance and management of bridges