

Bridge Asset Management Lessons Learned & Way Forward

Dr N. C. Pal OSD-cum-Engineer in Chief (Civil) Public Works Department, Govt. of Odisha

1

BMS ??? Bridge Maintenance / Serviceability

- Bridges in any road network are valuable assets and cannot be built and just forgotten.
- It is a misconception that a bridge once constructed does not require any substantial maintenance for the first couple of decades.
- Though the pavement failures are common and visible, bridge failure when they occur often become catastrophic.
- Even high quality of construction without proper maintenance, will lead to early failure of the bridge
- Bridge management is not merely a routine, but an art, which ensures that the bridges remain fit for their intended purpose over long period at minimum life cycle cost.

shutterstock.com · 1565350570

a alamy stock photo

Bridge Condition Survey

4

Bridge Collapses In Koraput Amid Heavy Rains, -16th August 2022

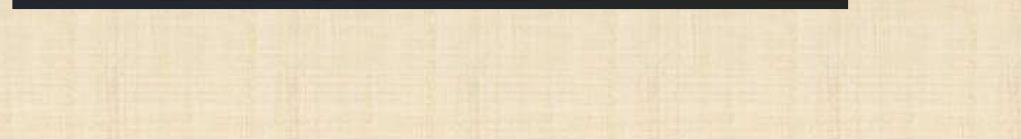
Bridge on NH-326 collapses in Koraput

0

orgus

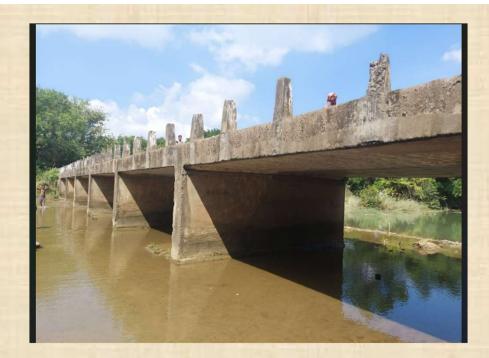
BRIDGE FAILURE NEED FOR RECONSTRUCTION

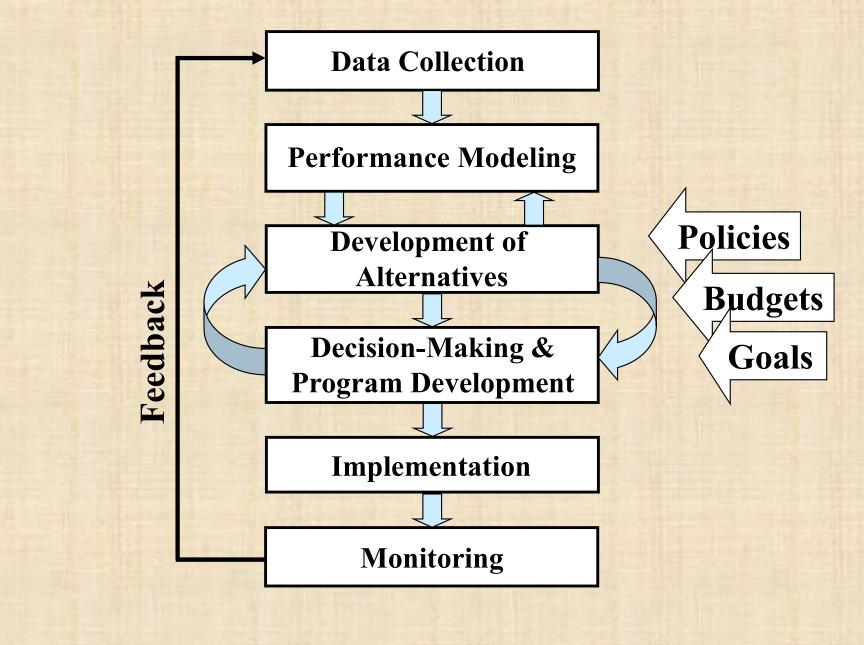
BRRRRRR


BRIDGE FUNCTIONAL NEED FOR REHABILITAION

BEERE BELLEVILLE TRANSPORT

A CONTRACTOR OF THE OWNER OWNER




What is Asset Management?

1. Systematic process of maintaining, upgrading and operating physical assets cost-effectively based on a continuous physical inventory and condition assessment.

- It combines sound business practices and economic theory, and it provides tools to facilitate a more organized, logical approach to decision- making.
- 3. Provides a framework for handling "short- and long-range planning"

Generic Process of Asset Management

Bridge Componets / Assets

ASSET DATA & ASSET INVENTORISATION

Asset Inventory

• Asset inventory is the foundation stone on which asset management processes are to be built

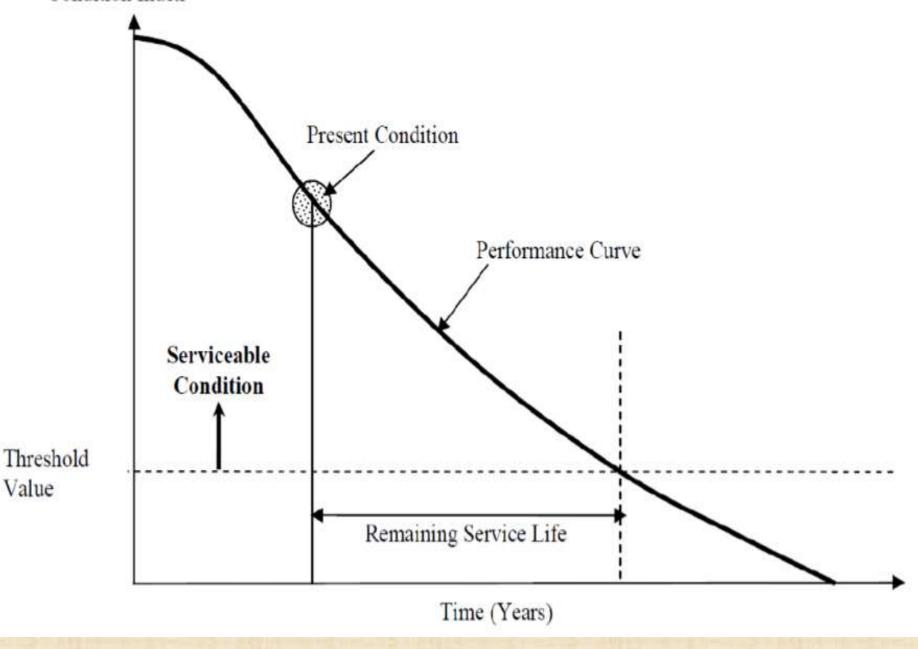
Desirable Data

• The inventory data requirements for the adoption of a fully implemented asset management approach can be determined from considering the purpose and potential use of such data.

. BRIDGE ASSET DATA COLLECTION

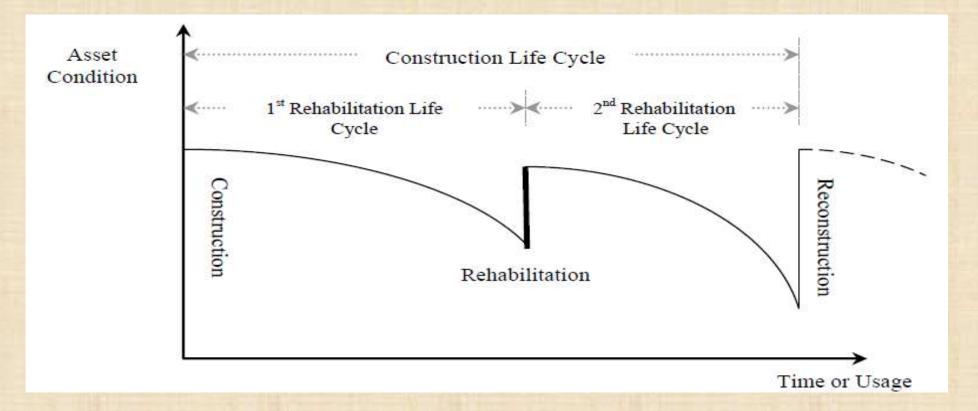
- The data base is a central feature of BMS in the modern context.
- The types of data needed for BMS can be broadly classified as inventory data and condition data.
- Network-level data should answer the general planning, programming, and policy decisions supported by the network-level BMS;
- Project-level data should support decisions about the best treatment to apply to a specific bridge project. As these data are collected, they can be stored to create a more complete database over time. However, a method must be established to keep the data current; and,
- Research-level data should be established to collect detailed data on specific attributes to answer selected questions.

METHOD OF DATA COLLECTION


- The cost of data collection tends to be the largest component of managing and running a BMS.
- It is therefore important to select data acquisition technology that is appropriate to the objectives, resources and modus operandi of the agency.
- The criteria that can guide the selection of the data collection method are:
- Reliability: A trade-off between the accuracy of the method and its productivity.
- Accessibility (Resources): Deals with the efforts required to transfer the data from the collection medium to the database, the capability for reviewing and verifying the data before storage, and the speed and accuracy with which transference to storage can be made;
- Affordability: Includes technical support, staff and financial resources required to sustain the data acquisition process continually through the annual operations of the agency.

FREQUENCY OF DATA COLLECTION

- Data should be collected only as frequently as is required to ensure proper management of the Bridges.
- The frequency can vary depending upon the data of interest.
- Frequency of data collection is guided by the following factors:
- a) Level of data collection (Network or Project);
- b) Intended use of the data (Planning or programming etc);
- c) Method of data collection (sampling or continuous);
- d) Significance of the Bridge ;
- e) Type of funding (public funds or private funds or loan/grant);
- f) Availability of human resources (In-house or outsourced);


Assessment of Remaining Service Life

Condition Index

ASSET MANAGEMENT DECISION MAKING & MAINTENANCE PLAN

Decision Making Criteria Project Level Decision Making Network Level Decision Making Asset Maintenance Planning

Institutionalization of RAMS

- For sustainability of Road Asset Management within an organization, it is important that institutional support is available from high ranking decision-makers.
- A separate organizational unit within the department / agencies staffing structure is essential with explicit responsibility for the RAMS development/ commissioning, implementation, operationalization
- Responsibility includes awareness of the system, manage data collection, constantly look for ways of improving data collection procedures and data quality assurance, periodical review of off-the-shelf RAMS packages available and used worldwide.
- There should be a budget for the operation of the system, including all staffing, equipment, data collection (outsourced or inhouse), field travel, quality assurance etc.

Adoption of Appropriate Technology

- It is important that the RAMS implementation should fit within the overall IT strategy of the department / highway agency,.
- Technical requirements should describe the technology environment within which the RAMS will fit (ie hardware, operating systems, databases, GIS, and other applications).
- IT implementations should preferably use commercial offthe-shelf (COTS) products, wherever possible as custom developed applications have often proved difficult and expensive to sustain.
- It must be acknowledged that RAMS like any other system is not static as technology continues to move forward in a number of areas such as IT, data collection, road deterioration modeling, maintenance treatments etc

9.	(\bullet)	75%	*		$\left \right\rangle$	J.	1

IRC:130-2020

GUIDELINES FOR ROAD ASSET MANAGEMENT SYSTEM (RAMS)

Pathways Video Inspection Vehicle

Automated Road Survey Equipment

Automated Road Survey System – CRRI New Delhi

Digital Cameras

Asset and Pavement View cameras - up to 16 High resolution - 1280 x 960 pixels Fully Digital interface

Data Acquisition System Compact PC system with operator LCD(s) No dedicated equipment rack required Real-time data processing Unified database correlates all data

GPS or DGPS

Trimble

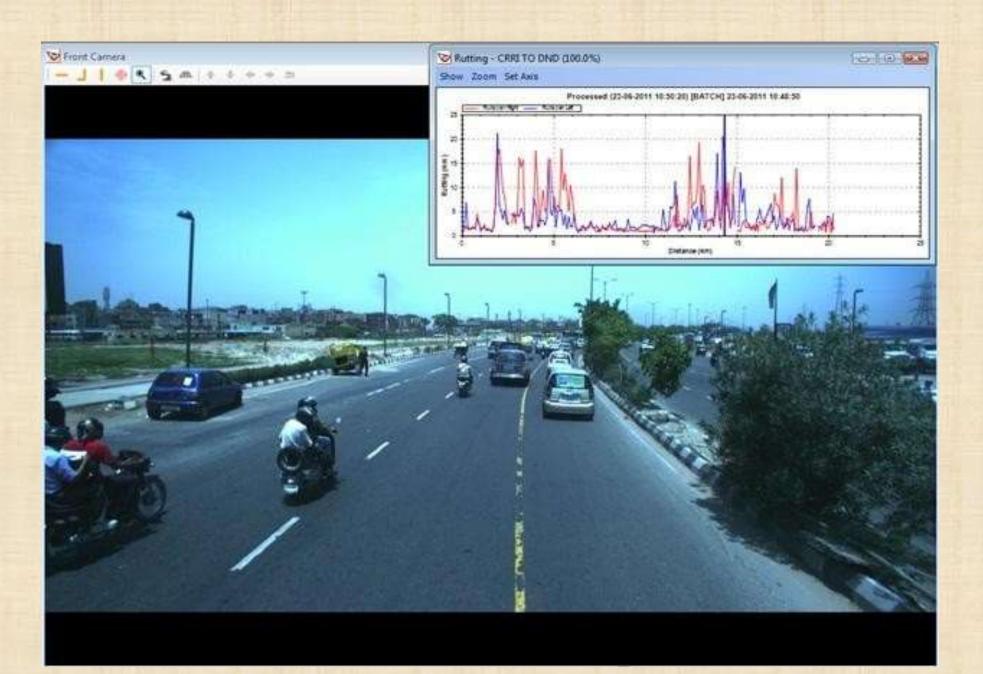
GIPSI-Trac Geometry 3D road geometry maps

Front Laser Mounting Beam

Supports 30+ lasers / accelerometers / gyros Inter-changeable lasers (16 kHz, 32 kHz, 64 kHz or 78 kHz) Configured to meet international standards and client requirements

Side Projection Lasers Full lane width (typically 3.5 m) Enables full transverse profile

ARSS-Rut Scanner


Asset Camera Measurements

Operator's Console and Display

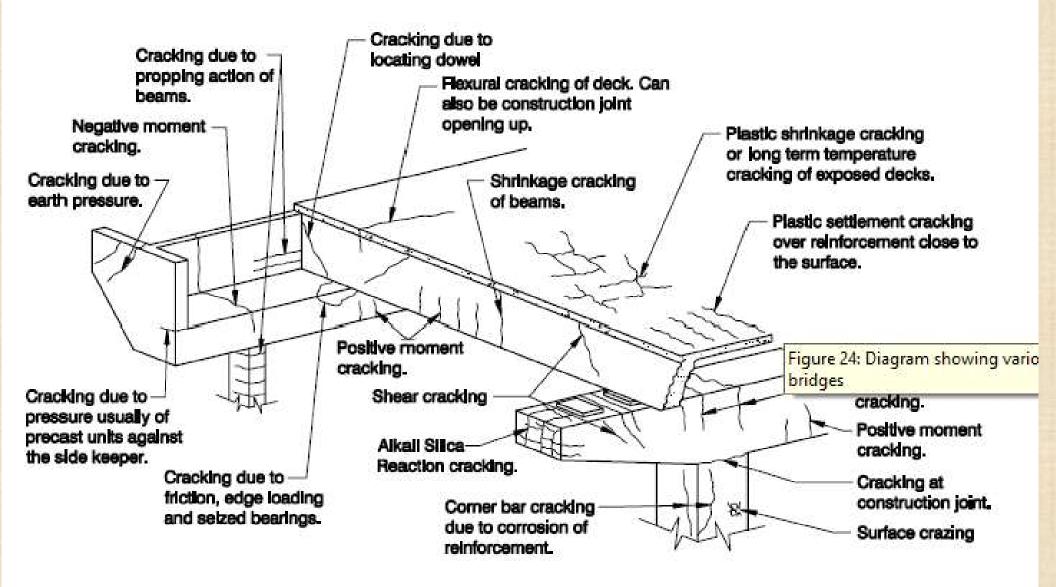
Comparison of Rut data with the Real Pavement Surface Condition (High Rut Depth)

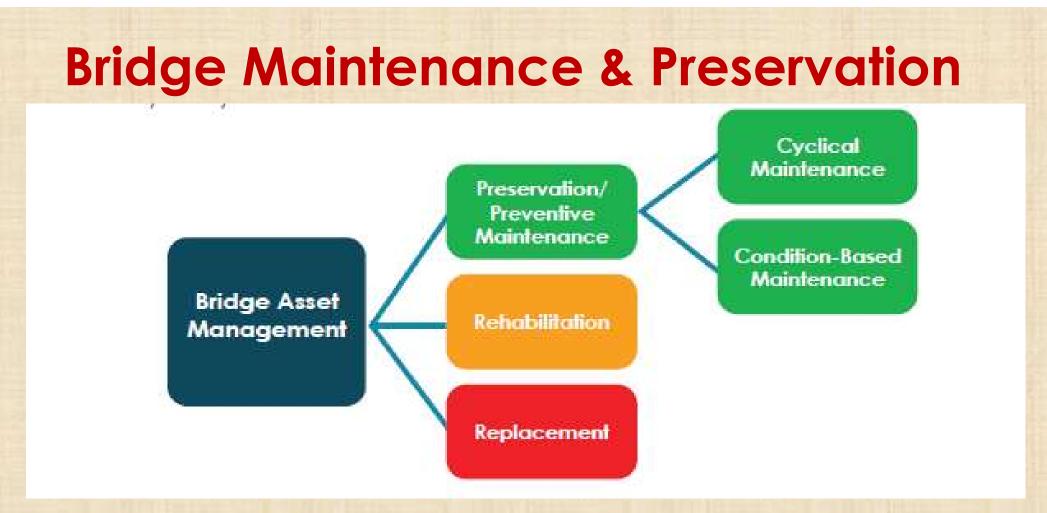
Bridge Management System(BMS)

- Bridge Management System(BMS) is a system designed to optimize the use of available resources for the inspection, maintenance, rehabilitation, and replacement of bridges (AASHTO)
- Bridge inspection is an essential element of any Bridge Management System particularly for aged and deteriorated bridges and a path way to condition rating.
- The validity of Condition Assessment relies heavily on the quality of the inspection.
- A BMS consists of a database of bridge information and analysis tools to identify needs and prioritization for bridge maintenance, rehabilitation, and replacement.

Bridge Componets / Assets

Bridge Components/ Assets



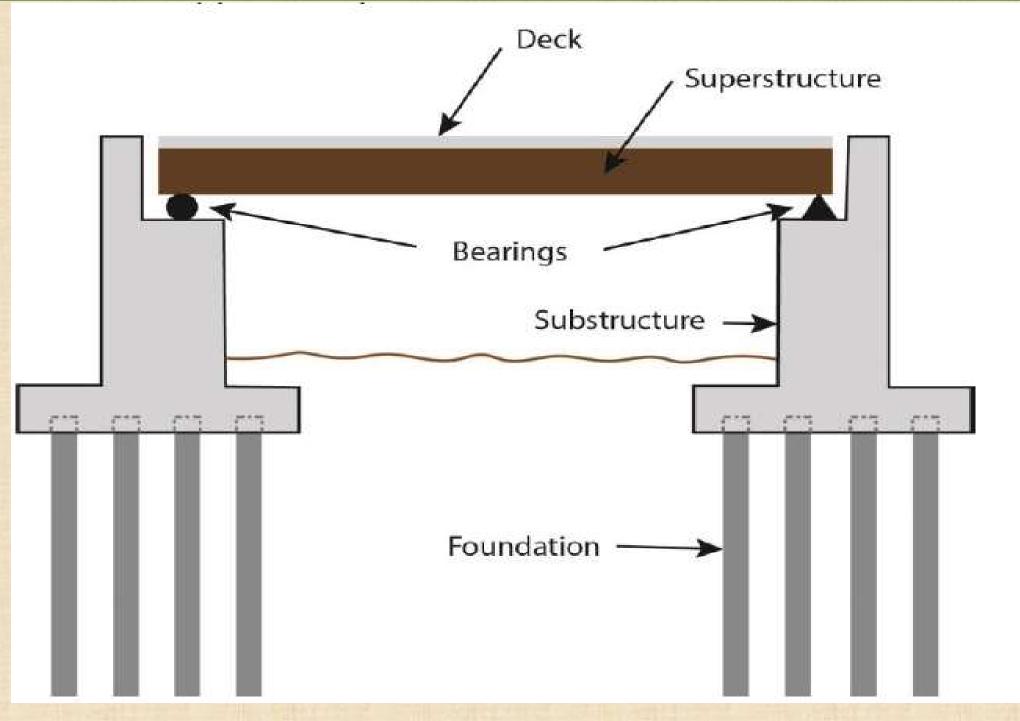

Figure 24: Various types of cracks in bridges

Bridge Maintenance Activity & BMS

- Bridge Maintenance is a critical component of an Organization's Road Asset Management plan that includes both routine and preventive- maintenance for Minor Bridges, Major Bridges, Culverts / other Cross Drainage Structures, which are important component of a highway /road network system
- Maintenance and repair are complementary operations and are both essential components of Bridge Management.
- Maintenance is cyclic activity which is repeated over the life of the structure. It is preventative in principle and is generally straightforward, routine and repetitive.

Bridge Routine Maintenance & Preservation

- Bridge Routine Maintenance encompasses work that is performed in reaction to an event, season, or activities that are done for short-term operational need that do not have preservation value. This work requires regular reoccurring attention.
- Bridge Preservation is defined as actions or strategies that prevent, delay, or reduce deterioration of bridges or bridge elements; restore the function of existing bridges; keep bridges in good or fair condition; and extend their service life.
- Preservation actions may be cyclic or condition-driven.


Bridge Maintenance & Preservation is generally done through a systematic process of **Bridge Asset Management**, which in turn is an integral part of any complete highway/road asset management planning for an organization.

Methodology

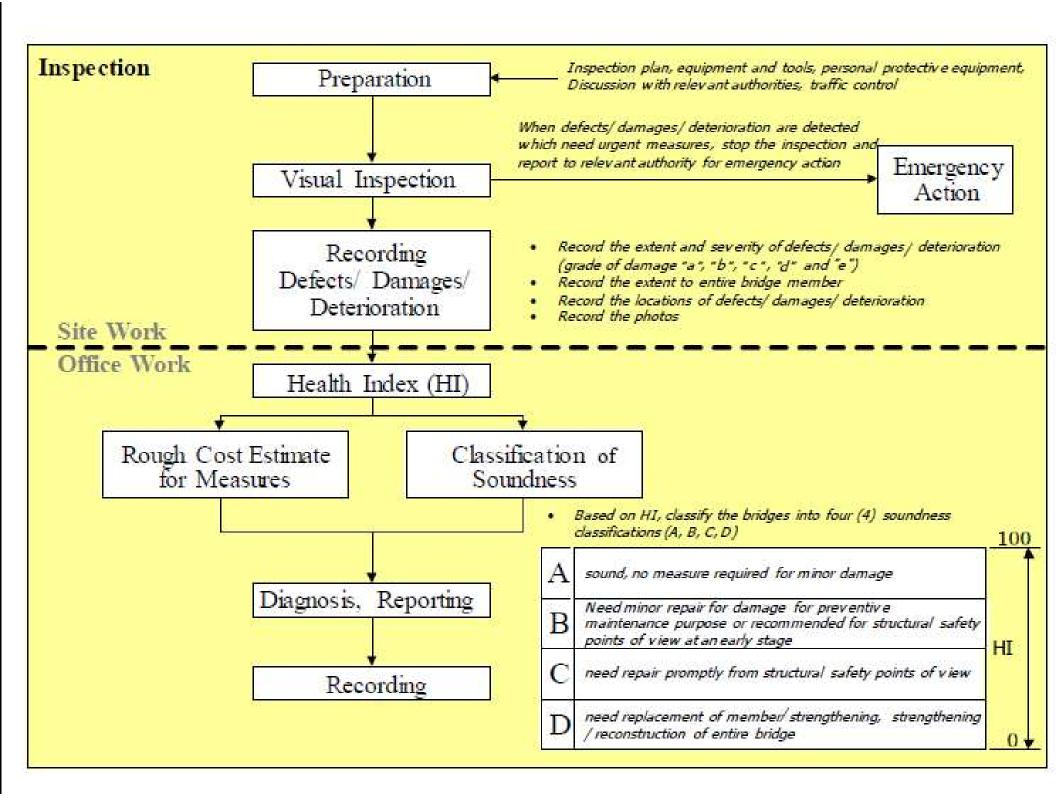
Seven-steps process

- Inspection & Identification of distress types
- Severity & extent of distress
- Condition rating for elements
- Overall rating of the bridge
- Maintenance Strategy Decision making
- Prioritization & Implementation
- Performance Monitoring & Evaluation (KPI)

What to inspect & How ???

Benefits of Preventive Maintenance and Consequences of Deferred Maintenance

- Bridge preservation strategy that employs the right treatments at the right times is the most cost-effective strategy for the management of highway bridges
- It costs less to maintain bridges in good condition than to maintain them in a **deteriorated condition**.
- Applying the wrong treatments or deferring maintenance altogether, leads to a major rehabilitation or possible complete replacement.
- Rehabilitation projects and replacement projects are costly.
- Bridge repairs and rehabilitation improve the condition of the bridge.


Benefits of Preventive Maintenance and Consequences of Deferred Maintenance

- Each repair adds to the length of time the bridge will remain in service.
- As the structure ages further, the condition rating drops and soon another repair or rehabilitation becomes necessary.
- Eventually, the deterioration becomes extensive and the structure has to be replaced.
- During the life of a bridge, some elements such as expansion joints and approach slabs are repaired several times, each time improving the element condition but not the overall bridge condition rating.

- More extensive rehabilitation, such as deck or superstructure replacement have a greater effect on the bridge condition ratings, but are done less frequently.
- The deck may be replaced once during the life of the bridge.
- A second deck replacement project is not common as too many other elements of the bridge may also require replacement
- At that point the service life of the bridge is reached. The bridge becomes a replacement candidate.

Funding Bridge Preservation

- Bridge managers look to address the needs of all bridges in their inventory / Network (Odisha 3700 cases)
- They **balance investments** in new bridges, rehabilitation, and preventive maintenance activities.
- Just as using all available funds for bridge replacements would neglect the preservation of existing bridges, using all resources on preventive maintenance would ignore more significant needs, such as bridge replacements and rehabilitations.
- Decisions on funding bridge preservation require clear objectives and measureable goals and are based on needs.
- An objective could be as simple as: Implement timely preservation treatments on structurally sound bridges, thereby extending their useful life.

Current Practices in our country by MORTH /NHAI /State PWDS

vis-s-vis

Literature Survey on Bridge Maintenance Practices Around the World

BRIDGE INSPECTION / CONDITION RATING MAINTENANCE STRATEGY

BMS GLOBAL APPROACH

Road Development Authority Japan International Cooperation Agency

Bridge Inspection and Diagnosis Manual

October 2017

The Project for Capacity Development on Bridge Management In The Democratic Socialist Republic of Sri Lanka

THE MANUAL FOR BRIDGE EVALUATION

2019 Interim Revisions

Pub. Code: MBE-3-11-OL ISBN978-1-56051-712-2

Office of Bridges and Structures

Bridge Maintenance Manual

Issue Date: January 1, 2014

Developed By:

PROJECT NO. TR-646 SPONSORED BY THE IOWA HIGHWAY RESEARCH BOARD

SCAN TEAM REPORT Scan 07-05


Best Practices In Bridge Management Decision-Making

Supported by the National Cooperative Highway Research Program

INTERNATIONAL TECHNOLOGY EXCHANGE PROGRAM

Bridge Preservation and Maintenance in Europe and South Africa

Office of International Programs FHWA/US DOT (HPIP) 400 Seventh Street, SW Washington, DC 20590

Tel: 202-366-9636 Fax: 202-366-9626

international@fhwa.dot.gov www.international.fhwa.dot.gov

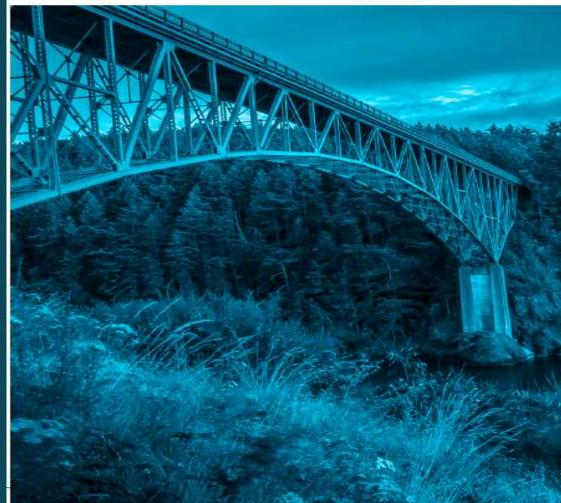
Publication No. FHWA-PL-05-002 HPIP/03-05(3M)EW

Bridge Maintenance Manual

PUB 55 (4-20)

INDIANA DEPARTMENT OF TRANSPORTATION AND PURDUE UNIVERSITY

Bridge Preservation Treatments and Best Practices


Mark D. Bowman, Luis M. Moran

SPR-3617 • Report Number: FHWA/IN/JTRP-2015/22 • DOI: 10.5703/1288284316007

Bridge Preservation Guide

Maintaining a Resilient Infrastructure to Preserve Mobility

Spring 2018

U.S. Department of Transportation Federal Highway Administration

Report on Techniques for Bridge Strengthening

Main Report

April 2019

U.S. Department of Transportation Federal Highway Administration

FHWA-HIF-18-041

Bridge Inspection & Maintenance System

INSPECTION MANUAL

Version 3.1

BRIDGE INSPECTION & CONDITION RATING - JAPAN

- Each element in the structure is evaluated based on every single kind of defect, such as cracking, corrosion, etc., A demerit rating is assigned to each element in a tabular format.
- According to the Regular Inspection Procedure for Road Bridge (2014) regulated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), there is basically one inspection type; Regular Inspection.
- Regular inspection in Japan is a hands-on visual inspection of components or elements in a close distance.
- For every structural member in each span, the condition is translated into either of the maintenance urgency ratings

CONDITION RATING OF BRIDGES IN JAPAN

-		Condition	Description
47	Ι	Good	No obstacle to the function of the structure.
	Π	Preventive maintenance phase	There is no obstacle to the function of the structure, but it is desirable to take preventive maintenance.
	III	Early rehabilitation phase	There is a possibility that the function of the structure may be hindered, so a rehabilitation strategy must be taken.
	IV	Emergency repair phase	Presence of an obstacle to the function of the structure, or a possibility of occurrence is extremely high. An urgent action must be taken.

Maintenance urgency ratings are diagnoses given by experienced engineers in a very subjective manner, for each member, taking into account the damage type, location of damage, direction of crack, earlier remedial work history, etc.

BRIDGE INSPECTION & RATING -UNITED STATES OF AMERICA

- National Bridge Inspection Standards (NBIS) set the criteria for proper inspection and evaluation of all highway bridges in the United States.
- According to the American Association of State Highway and Transportation Officials (AASHTO) manual for Condition Evaluation of Bridges, the overall condition rating is assigned for three major components: deck, superstructure and substructure which are further divided into various elements
- Federal regulations address bridge inspection population, inspection intervals, inspection methods, inspection personnel, and inspection reporting

Eight types of bridge inspections- USA

Inspection	Description			
Initial	First inspection of a bridge as it becomes a part of the bridge inventory to determine baseline structural conditions.			
Routine	Regularly scheduled inspection consisting of observations and/or measurements needed to determine the physical and function condition of the bridge.			
Damage	Unscheduled inspection to assess structural damage resulting from environmental factors or human actions.			
In-Depth	A close-up inspection which investigates deficiencies that were not detected during Routine Inspection.			
Special	An inspection scheduled at the discretion of the bridge owner, used to monitor a particular known defect or suspected deficiency.			
Underwater	Inspection of the underwater portion of a bridge substructure and the surrounding channel.			
Hands-on	Inspection within arm's length of the component. Inspection uses visual techniques that may be supplemented by NDT.			
Fracture- Critical Member	A hands-on inspection of a fracture-critical member or components that may include visual and other non-destructive evaluation.			

NDT: Non-destructive Test

CONDITION RATING SYSTEM – USA

Rating	Description		
N	Not Applicable.		
9	Excellent Condition.		
8	Very good Condition – no problems discovered.		
7	Good Condition – some minor problems. Satisfactory Condition – structural elements		Descriptive condition rating for elements
6			Table 5: Descriptive condition rating for elements
-	show some minor deterioration.	Condition	Description
5	Fair Condition – all primary structural		Description
	elements are sound but may have minor section loss, cracking, spalling, or scour.	Good	Element is limited to only minor problems.
4	Poor Condition – advanced section loss,	Fair	Structural capacity of element is not
	deterioration, spalling, or scour.	1 ан	
3	Serious Condition – loss of section,		affected by minor deterioration, spalling,
	deterioration, spalling or scour have		cracking etc.
	seriously affected primary structural elements	Poor	Structural capacity of element is affected by
2	Critical Condition – advanced deterioration		advanced deterioration, section loss,
-	of primary structural elements.		spalling, cracking or other deficiency.
1	Imminent Failure Condition – major		spanning, cracking of other deficiency.
	deterioration or section loss present in		
	critical structural components, or obvious		
	vertical or horizontal movement affecting structure stability.		
0	Failed condition – out of service.		
0	ranca condition – out of service.		

FIVE TYPES OF BRIDGE INSPECTION IN UK

Inspection	Description
Acceptance	Performed for new bridges, newly repaired bridges, and newly start of a new maintenance contract.
Superficial	Checks for outstanding defects that pose a risk to safety are highlighted and action taken immediately to remedy them.
General	Applies to bridge elements that are easily accessible.
Principal	All bridge elements, including those that are difficult to access. This may sometimes require specialist access machinery or tools.
Special	Detailed investigation of a particular bridge component. Bridges that have been strengthened using plates bonded to them also require special inspections.

Methodology of visual inspection in U.K. is primarily based on *Severity* – *Extent* code prescribed procedure set out by Highway Agency.

UK Bridge Condition Rating System

- The severity defines as the degree of damage while extent is a measure of the length, area, or number of defects of the bridge element.
- Condition rating used in the UK is a scale of 1-5, describing the degree of deterioration, from minor (structurally sound) to a collapsed state (non-functional).

C	ode	Description
	A	No significant defect.
nt	В	Slight, less than 5% of length/area affected.
Extent	С	Moderate; 5% – 20% of area/length affected.
Ш	D	Wide, 20% - 50% affected.
	E	Extensive; over 50% of surface area/length.
	1	As new, or has no significant defect.
ity	2	Early signs of deterioration, minor defect.
Severity	3	Moderate, some loss of functionality expected.
	4	Severe defect and/or element is close to failure.
	5	The element is non-functional/failed.

BRIDGE INSPECTION IN SOUTH AFRICA

- Inventory and inspection of bridges is done by the South Africa National Roads Agency Limited (SANRAL) for bridges on national roads, Provincial departments of transport for bridges on provincial roads and municipal transport agencis for bridges on municipal roads.
- South African maintenance practice includes five types of inspections.
- The defects are rated for their Degree, Extent, Relevancy and Urgency (DER&U).
- The DER&U rating system identifies defects and prioritizes them by evaluating their relative importance to the structural integrity of the bridge.
- It is important to note that the ratings are not directly associated with the elements but with the damage

BRIDGE INSPECTION IN SOUTH AFRICA

Inspection	Description			
Monitoring	A quick check on the new defects and the status of the previously known defects. A monitoring inspection does not produce any condition rating.			
Principal	A thorough examination and record of a bridge for all defects.			
Verification	Are performed annually by SANRAL in order to verify the accuracy of inspection data.			
Project-level	Inspection to collect information for contract documents.			
Acceptance	Inspection of work during and after a contract.			

BRIDGE INSPECTION IN DENMARK

- Danish Road Directorate used a computer-based BMS, called DANBRO, to manage their bridges.
- DANBRO throughout Denmark since 1988 identifies eight types of bridge inspections.
- For each defect reported, the inspector will recommend a repair scheme, its year of application, and also estimate the costs for repair actions
- Condition ratings in Denmark are built up from three contributors: damage (3 points), function (1 point), and consequence (1 point).
- The overall rating scale is 0-5, with '0' meaning no damage and '5' implying that the component can no longer fulfil its function

Eight Types Bridge Inspection in Denmark

τ				
Inspection	Description			
Inventory	Collect bridge data and baseline conditions.			
Daily*	Cursory examination noting failure, damage, debris, etc.			
Routine-	Planning and checking routine			
Extended	cleaning and maintenance.			
Reports from	Reports of: impact damage,			
Users	vandalism, debris on bridge or roa and erosion damage.			
Principal	Thorough and systematic visual inspection of all the components of the bridge.			
Special	Collection of more detailed information for decisions on maintenance actions.			
Economic Special	Preparation for major repair project			
Inspection for a bridge.				
Technical Special	Damage investigations, Special			
Inspection	investigations, Load-carrying capacity evaluations.			

* | Not a formal part of the Directorate Bridge Inspection Program.

DANISH ROAD DIRECTORATE "DANBRO" RATING SYSTEM

Rating	Description
0	Insignificant deterioration; little or no damage.
1	Minor deterioration; damage with a very slow rate of development.
2	Damage is at an early stage of development or there are a few fully developed defects.
3	Damage has developed to such a degree and/or extent that it is likely that within a short time the component will no longer fulfil its function.
4	The component is severely deteriorated, such that its capacity to fulfil its function has or will soon disappear. Repair is necessary in the near future.
5	The component has completely deteriorated and can no longer fulfil its function.

Bridge Inspection & Condition Rating in Germany

- Bridge inspections at two levels called Major Test and Minor Test.
- Major tests are arms-length (DIN wording is "touchingdistance") inspections of all elements with access to all parts.
- Minor tests are done three years after each major test.
- In Germany, condition rating scales run from 0 (good) to 4 (very poor).
- Each bridge component is assigned three ratings; one each for structural damage, traffic safety, and bridge durability.

Bridge Inspection Type in Germany

Inspection	Description				
Major Test	Arms-length inspection of all components; uses access equipment and includes underwater inspection.				
Acceptance	Major test.				
Guarantee	Major test.				
Minor Test	Verification of current state of known damage and defects.				
Superficial	Cursory inspection for safety.				
Ad Hoc	After significant events, such as storms, floods, etc.; also for known, severe damage.				
Systems	Inspection of electrical or mechanical systems.				

<u>GERMANY - RATING FOR STRUCTURAL DEFECT &</u> <u>BRIDGE COMPONENTS</u>

Rating	Description
0	Defect has no effect on the strength of the
1	element or structure. Defect affects the strength of the structural element, but does not affect the strength of the structure.
2	Defect affects the strength of the structural element and has little effect on the strength of the structure.
3	Defect affects the strength of the structural element and the structure. Structure does not have adequate strength.
4	Structural strength of the structural element is lost. Structure does not have adequate strength. Repair or rehabilitation is needed.

Grade	Description
1.0-1.4	Very good structural condition.
1.5–1.9	Good structural condition, but may have less long-term durability.
2.0-2.4	Satisfactory structural condition, but may have less long-term durability.
2.5-2.9	Unsatisfactory structural condition. Traffic safety may be affected.
3.0-3.4	Critical structural condition. Traffic safety is affected.
3.5-4.0	Inadequate structural condition. Traffic safety is not adequate.

Canadian rating (Bridge Condition Index),

- One of the option could be to consider the replacement cost of the bridge and then define BCI (Bridge Condition Index).
- To calculate the BCI rating, the current value is divided by the replacement cost of the bridge.
- Good BCI Range 70 -100 (For a bridge with a BCI greater than 70, maintenance work may not be required within the next five years).
- Fair BCI Range 60 -70 (For a bridge with a BCI between 60 and 70 the maintenance work can be scheduled within the next five years. This is the ideal time to schedule major bridge repairs from an economic perspective.
- **Poor BCI Less than 60** (For a bridge with a BCI rating of less than 60, maintenance work should be scheduled within one year).

Scenario in India – Indian Roads Congress IRC Guidelines

IRC Guidelines for Inspection, Maintenance, Repair, Strengthening, Retrofitting & Rating of Bridges

- 1. IRC:SP:18 Manual for Highway Bridge Inspection
- 2. IRC:SP:35, Guidelines for Inspection and Maintenance of Bridges

3. IRC: SP:37 Guidelines for <u>Evaluation of Load Carrying Capacity</u> Bridges.

4. IRC: SP:40 Guidelines on <u>Repair, Strengthening and Rehabilitation</u> of Bridges

- 5. IRC:SP:52 Bridge Inspectors Reference Manual
- 6. IRC:SP:51 Load Testing of Bridges
- 7. IRC: SP:74 Guidelines for Repair and Rehabilitation of steel bridges
- 8. IRC:SP 75 Guidelines for <u>Retrofitting of Steel Bridges</u>

BRIDGE CONDITION RATING - IRC SP 40-2019

Table 6.2 C	ondition Sta	tes for B	Bridge	Components
-------------	--------------	------------------	--------	------------

SI. No.	Condition State	Condition	Extent & Severity of Distress	Type of maintenance
1	Excellent	condition; component do not individually or as a whole impair the strength, stability, traffic	deficiencies may be present. Extent of deficiencies is nil or insignificant. Severity of	No need of repair except routine maintenance.
2	Good		is minor; Severity of deficiencies is low.	Specialized maintenance and repairs may be needed at convenience.
3	Fair	Satisfactory structural condition; strength, stability and traffic safety of the components/ structure is assured however considerable reduction is possible in the long term; serviceability and durability of the affected component is reduced and durability of the structure might be impaired considerably in the long term.	of deficiencies is medium.	and repairs needed soon.

BRIDGE CONDITION RATING -INDIA- AS PER IRC SP 40-2019

IRC:SP:40-2019

SI. No.	Condition State	Condition	Extent & Severity of Distress	Type of maintenance			
4			is large; Severity of	f replacement on			
5	Critical	Weak structural condition; partial failure or risk of total failure of the component or as a whole; durability of the structure is no longer ensured; immediate propping of the structure and closing may be required.	is very large/ expensive; Severity of deficiencies is	replacement is required immediately; design			

Decision processes for maintenance

- Quality of Inspection & Reliability of insitu data
- Bridge Condition Rating (Element level & Full)
- Maintenance Needs (Element level & full)
- Effectiveness of Maintenance (Alternatives)
- Funding Availability & Economic Evaluation
- Project Level Work Program
- Network Level Work Program
- Implementation & Monitoring

Inspection by Bridge Inspection Vehicle

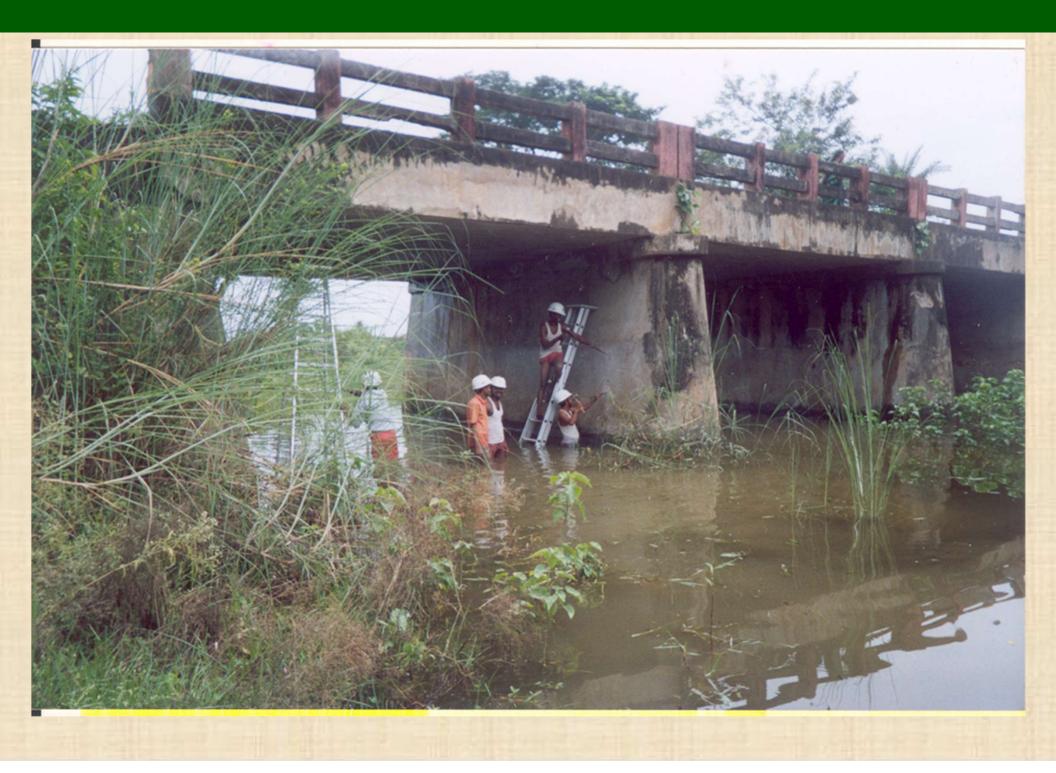
Inspection by Ladder

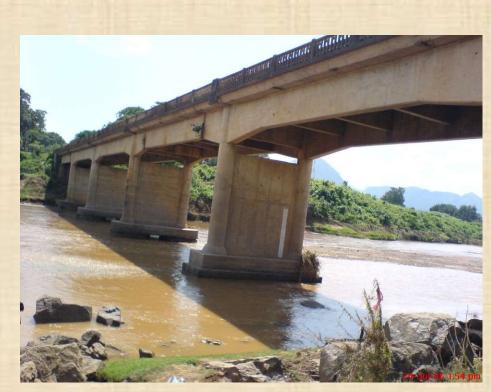
Inspection by Pole Camera


Typical Mobile Bridge Inspection Unit

IVIOBILE BRIDGE

Manufactured under technical collaboration with CSIR-CRRI


Typical Mobile Bridge Inspection Unit



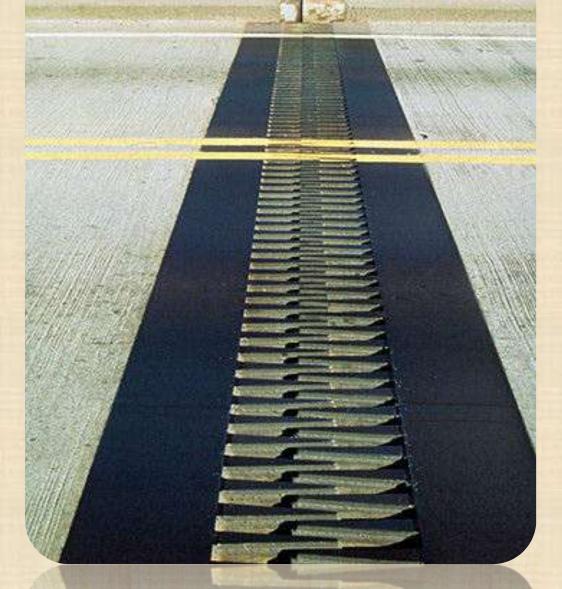
Typical Mobile Bridge Inspection Unit

Challenges in Insitu Testing

Challenges Insitu Testing

BRIDGE REHABILITATION TECHNIQUES

	Classification	CO ₂ Resistance	Water Vapour Transmission	Cl/H ₂ O Resistance	Application		Durability		Cost	
Product Category					Damp Condition	Ease	Strong UV	Wet \Dry	Recoat Interval	Ease of Recoat
Film Forming										
Polyurethane	Coating	Very High	Very Low	Very High	No	Poor	Poor	Good	Good	Poor
Epoxy Resin	Coating	Very High	Very Low	Very High	Fair	Poor	Fair	Good	Good	Poor
Epoxy Coal Tar	Coating	Very High	Very Low	Very High	No	Good	Poor	Good	Fair	Good
Chlorinated Rubber	Coating	Very High	Moderate	Very High	Yes	Good	Fair	Fair	Fair	Good
Acrylics	High Build Coating	Very High	Very Low	High	Fair	Good	Good	Poor	Poor	Good
Bituminous	Coating	High	High	High	Yes	Good	Good	Excellent	Excellent	Good
Polymer Modified Cementitious					Yes					
Non-Film Forming										
Silane Siloxane	Impregnation	Very Low	Very High	Very High	Yes	Good	Good	Very Good	Excellent	Good



External Post-Tensioning

Over the service life of a pre-stressed concrete member, loss in presstress may occur due to a variety of reasons. Posttensioned bridges can be effectively rehabilitated by external post-tensioning technique to compensate for loss in pre-stress or increase in wheel loads.

Maintenance Items & Objectives / Alternatives

SI	Maintenance	Objectives /
NO	Approach	Maintenance Response
1	Seal or replace	Minimizes the
	leaking joints or	deterioration of
	eliminate deck	superstructure and
	joints	substructure elements
		beneath the joints.
2	Deck overlays	Significantly increase the life of the deck by sealing of aging and weathering. Overlay systems include waterproofing membrane with asphaltic concrete overlay, low permeability or high performance concrete overlays, and methyl methacrylate and polymer-system
3	Cathodic Protection (CP) systems for	overlays. Proven technology for stopping the corrosion of reinforcing steel.
als due also	bridge decks	

Maintenance Items, Objectives & Best Practices

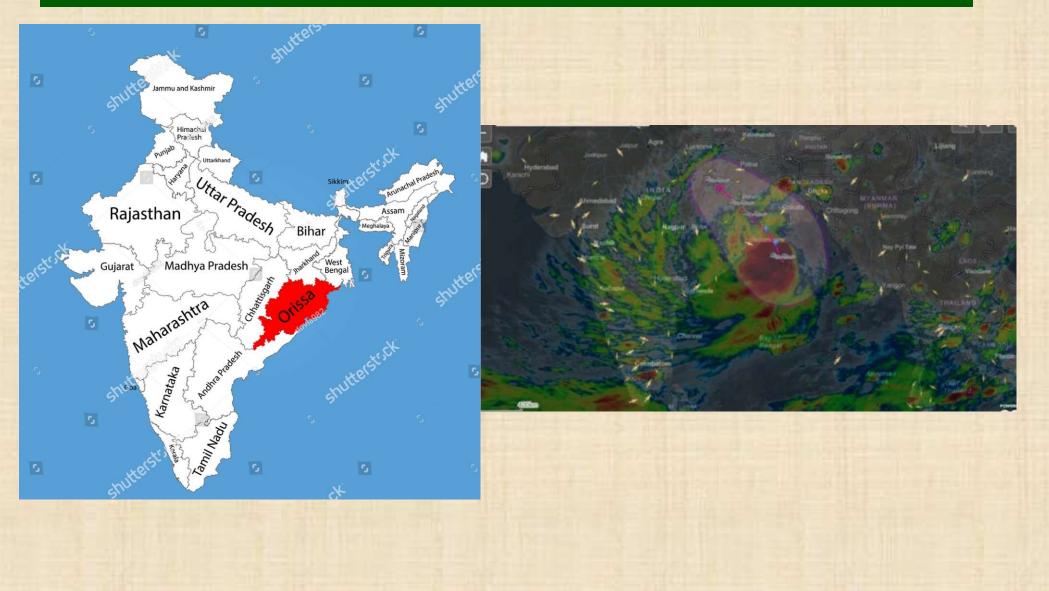
_			
	SI NO	Maintenance Approach	Objectives / Maintenance Response
	4	Electrochemical Chloride Extraction (ECE) treatment	Removes the chloride ions from the vicinity of the reinforcing steel and thus eliminates the source of corrosion.
	5	Concrete deck repairs in conjunction with installation of deck overlays, CP systems, or ECE treatment	Proven technology for stopping the corrosion of reinforcing steel.
110 C 110 C	6	Painting/coating or overcoating of structural steel	Protectsagainstcorrosion.Reducesthedeteriorationofthestructural steel
	7	Retrofit of fracture critical members	Methodstoaddredundancytothestructuresuchasinstalling a redundantatchcatch system for pin andatchlink assemblies.installes

Maintenance Items, Objectives & Best Practices

SI NO	Maintenance Approach	Objectives / Maintenance Response
8	CP systems for substructure elements	Proven technology for stopping the corrosion of reinforcing steel.
9	ECE treatment for substructure elements	Removes the chloride ions from the vicinity of the reinforcing steel and thus eliminates the source of corrosion. Can be very effective when the source of chlorides is eliminated
10	Installation of scour countermeasures	Protects the substructure elements from undermining and failure due to scour.
11	Removing large debris from channels	Prevents channel bed material from scouring.
12	Installation of jackets with CP systems around concrete piles	Protects against corrosion and deterioration.
13	Application of concrete sealants, coatings, and membranes for surface protection of the concrete -	Protect the reinforcing steel from corrosion by stopping or minimizing the intrusion of water and chloride through the concrete.

Performance Monitoring and Evaluation

- It is desirable to have a process for monitoring and evaluating the asset management implementation through performance measure parameters.
- Some of the key performance indicators (KPI)


a) Average condition of the all bridges on a network in terms of Bridge Condition Indices (BCI) before and after implementation of BMMS

b) Percentage of III condition bridges in a road network above a threshold values of SHI as an indication of timely intervention for improvement in functionality / serviceability,

c) Percentage of distress in a network level over a threshold values of Cracking/Corrossion / Spalling / or combination of these,

d) number of Bridges maintained per year

ODISHA CASE STUDY

OWD Bridge Example

Bridge Condition Survey

- Critical attributes of bridge condition survey
 - I. Cracking
 - II. Spalling
 - III. Corrosion
 - IV. Settlement / scour / deformity
 - V. Condition of bearings

Bridge Condition Survey

- Elements for evaluation
 - I. Foundation
 - II. Protection works
 - III. Substructure
 - IV. Bearings
 - V. Superstructure

condition of expansion joints, drainage spout, wearing coat etc. also to be evaluated

Bridge Condition Rating

Severity

Level	Description		
Nil	No visible damage		
Low	All elements are in good condition with minor deterioration		
Medium	Element has only minor/advance section problems		
High	Structural capacity of element is affected or jeopardized by advanced		
	deterioration, section loss, spalling, cracking, or other deficiency		

Extent

Level	Description
Nil	No distress visible
Few	Less than 10% surface area affected
Moderate	10 to 25% surface area affected
Extensive	More than 25% surface area affected

Methodology

Four-step process

- Identifying the distress types
- Visual observation of distress (of severity & extent)
- Condition rating for elements
- Overall rating of the bridge

Identification of Distress

- Nature and Type of distress
 - 1. Cracking
 - 2. Spalling
 - 3. Corrosion in reinforcement
 - 4. Honey combing
 - 5. Leaching
 - 6. Loss of Plaster, loss of mortar, loss of element in Masonry structure
 - 7. Damage in Expansion Joint, Non functioning of Expansion Jt.
 - 6. Damage of railing/Crash Barrier/Parapet wall
 - 7. Scour of Foundation, Settlement of Foundation
 - 8. Distress in Bearing
 - 10. Damage in Wearing Coarse
 - 11. Damage in Floor Pitching and Slope Pitching
 - 12. Vegetation Growth in Structural Element and in Bed
 - 13. Damage in Drainage Spout

Cracking (Pattern, Width and Location)

Severity

Description	Rating
No cracking	Nil
Hair line cracks width <1mm	Low
Narrow and medium Cracks width 1mm to 5mm	Medium
Wide cracks width > 5mm	High

Description	Rating
No cracks visible	Nil
Up to 10% of surface area affected, mostly localized	Few
10% - 25% of surface area affected, either localized or evenly over structure	Moderate
More than 25% of the surface area affected, almost evenly over length	Extensive

Spalling of Concrete

Severity

Description	Rating
No Spalling	Nil
Slight spalling. Depth of spalling less than 10mm. Reinforcement not exposed.	Low
Extensive spalling. Depth 10mm to 50mm. Less exposure of reinforcement.	Medium
Extensive spalling. Depth > 50mm. Reinforcement exposed and corroded.	High

Description	Rating
No Spalling	Nil
Up to 10% of surface area affected, mostly localized	Few
10% to 25% of surface area affected, mostly localized	Moderate
> 25% of surface area affected, either localized or evenly over length	Extensive

Corrosion

Severity

Description	Rating
No corrosion	Nil
Reinforcement is partly exposed and corrosion has just started	Low
Reinforcement is fully exposed and scaling due to corrosion is observed	Medium
Pit corrosion and section loss of reinforcement bars are observed	High

Description	Rating
No corrosion	Nil
Up to 10% of surface area affected, mostly localized	Few
10% - 25% of surface area affected, either localized or evenly over structure	Moderate
More than 25% of the surface area affected, almost evenly over length	Extensive

Scour and Settlement

Severity

Description	Rating
No Scour visible	Nil
Observed depth of scour at foundation location is normal	Low
Depth of scour is more and settlement is less	Medium
Depth of scour is more and critical. Settlement of sub structure is also more and there is vertical dislodgement of pier and abutment	High

Description	Rating
No Scour, No Settlement	Nil
Up to 10% of foundations scoured	Few
10% to 25% of foundations scoured	Moderate
> 25% of foundations scoured	Extensive

Bearings

Severity

Description	Rating
No damage	Nil
Surface cracks in pedestal and slight deformation of bearings	Low
Cracks having 1mm to 5mm wide, and spalling in pedestal, appreciable deformation in bearings	Medium
Slitting and wide cracks in pedestal, bulging, deformation, bearing not sitting in full length, anchor bolts missing, rusting of bearings	High

Description	Rating
No damage	Nil
Minor damages in pedestal and bearings	Few
In 10 to 25% of bearings, there are damages in pedestal, but no damage observed in bearings	Moderate
More than 25% of the pedestal and bearings are damaged	Extensive

Expansion Joints

Severity

Description	Rating
The movement of the superstructure is free over the bearings (expansion joint is fully functional)	Nil
The movement of the superstructure is restrained partially (joint is filled with loose material)	Low
The movement of the superstructure is restrained partially (joint is filled with solid material – dust or bituminous material), expansion joint is also showing sign of damage of its material	Medium
The movement of the superstructure is totally restrained over the bearings (joint is filled with hard solid material such as stone aggregate pieces with dust/concrete/bitumen etc.). Expansion joint has become non-functional, concrete near joint cracks, starts failing and comes out, loses its anchorage system or even the material joint starts failing	High

Masonry Bridges

Severity

Description	Rating
No loosening/loss of area	Nil
Slight loosening of masonry/loss of area (< 5%)	Low
Extensive loss of area or showing the loosening of masonry at	Medium
various locations and tendency of further loss of area	Medium
Extensive loss of area or showing the loosening of masonry at	
various locations, substantial loss of area, regular feature of	High
reducing area	

Description	Rating
No loosening of masonry/loss of area	Nil
< 5% surface are of masonry affected at isolated locations	Few
5% to 10% of surface area of masonry affected at different locations	Moderate
10% of surface area of masonry affected at different locations but covering the entire length of the component	Extensive

Other Elements

Condition of the following elements will also be evaluated

- Wearing coat
- Drainage spout
- Railing

Bridge Condition – Overall Rating

Overall R	GOOD	FAIR	POOR	SEVERE (VERY POOR)
Cracking	No cracking/ hairline	Both extent and	Extensive, medium to	Extensive, wide cracks, continuous cracks
	cracking	severity are moderate. Cracks are narrow	wide cracks, area covered by the cracks is large	
Spalling	Slight or no	Cracks becoming	Extensive and deep	Extensive deep spalling, total
3-123	spalling	prominent and likely to lose cover, on the	spalling, loss of cover, falling of concrete in small	loss of cover, concrete chunks falling, reinforcement exposed
		verge of spall	pieces	
Corrosion	No corrosion	Slight corrosion	Corrosion visible on bars	Heavy corrosion, rust on
				reinforcement is easy to remove, loss of diameter of bars
Settlement	No settlement/	No settlement. Normal	No settlement. Normal	Settlement of substructure.
/ Scour	less scour	scour	scour	Scour in foundation and
Bearings	No deformity	No deformity	Damages of pedestal	protection works Bearings out of sitting, shifted
Dearnige			observed, shifting of	from its position and showing
			bearings from original	sign of failure. Pedestal
			position, deformation/ bulging of bearings	damaged
Expansion	Free	Partially restrained,	Severely restrained,	Totally restrained, solid material
Joints	movement	loose material in joint	loose/solid material in joint	in joint, adjacent concrete spalling
Masonry	No	Slight loss/loosening	Extensive loosening,	Extensive loss
	loss/loosening		tendency to loss	

Bridge Conditions: Action Needed

GOOD CONDITION

No intervention required

FAIR CONDITION

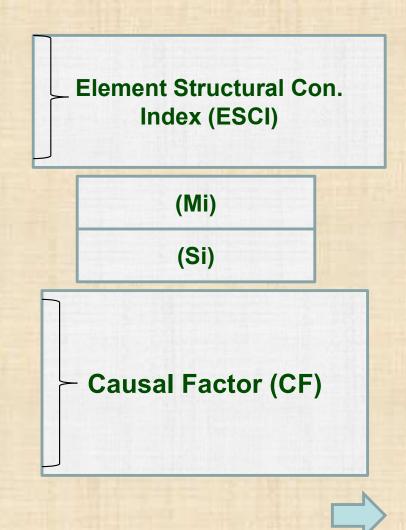
All primary structural elements are in good condition but have minor section losses.

Minor repair may be done on short-term basis

POOR CONDITION

Losses of section, deterioration, spalling, cracking or scour have seriously affected primary structural components.

Local failures are possible. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.


Immediate repairs are required.

SEVERE (VERY POOR) CONDITION

Major deterioration or section loss present in critical structural components.Bridge to be closed to traffic, requires major rehabilitation or
reconstruction.118

Structural Health Index (SHI)

- SHI indicator of overall condition of Structure,
 - Relative index for prioritization of Rehabilitation
 - Basis for finding the cost of rehabilitation
- It takes into account
 - 1. Type of distress
 - 2. Area of distress
 - 3. Degree of deterioration
 - 4. Material Vulnerability
 - 5. Structural Significance Factor
 - 6. Age Factor (A)
 - 7. Environment Factor (E)
 - 8. Road Importance (R)
 - 9. Inspection Factor (I)

Structural Health Index (SHI)

Table 4: Material Vulnerability Factor Mi

Material of the element	Material Vulnerability Factor, mi
Steel	1
Reinforced Concrete	2
Precast concrete	3
Pre stressed concrete	4

Element	Structural Significance
Barrier, Footway, Kerbs, Joints	1
Foundation, Abutment, Wingwall	2
Deck, Bearings	3
Beams, Headstocks, Piers	4

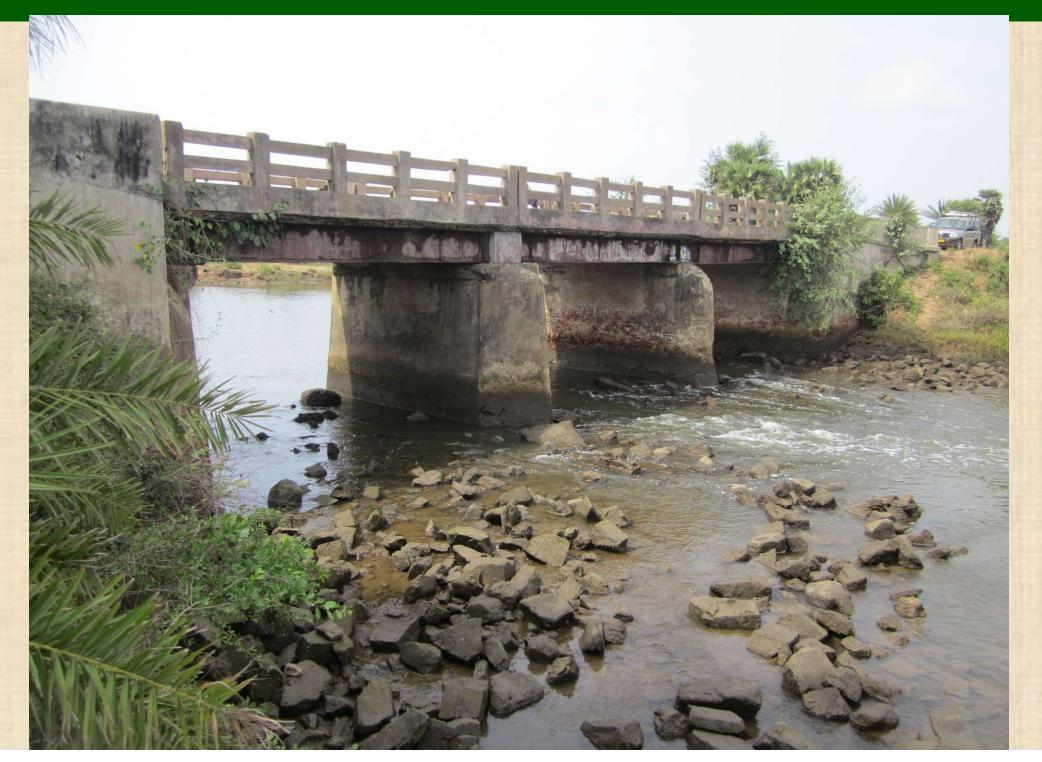
Structural Health Index (SHI)

- Causal Factor calculated on the basis of:
 - Analytical Hierarchy Process (AHP)
 - Developed by SAATY
- SHI is calculated :-
 - SHI = CF*Sum (ESCI*Mi*Si)/n

Overall Structural Condition Index (OSCI)

- OSCI/Rating is assigned on the basis of SHI values
 - 1. SHI = 1 10 \longrightarrow OSCI = 1 \longrightarrow Good2. SHI = 10 30 \longrightarrow OSCI = 2 \longrightarrow Fair3. SHI = 30 70 \longrightarrow OSCI = 3 \longrightarrow Poor4. SHI = > 70 \longrightarrow OSCI = 4 \longrightarrow Very Poor

Items Considered for Bridge Repair


SI.	Nature of distress	Severity	Maintenance treatment	Ref to Data
No.		Corolly		Book Item No.
1	Vegetation growth in structural element		Clean and uproot rank vegetation	2.3
		low	Apply Epoxy mortar/ Polymer mortar	16.8
2	Spalling	Medium	Gunniting concrete surface with cement mortar after cleaning surface and spraying Epoxy	16.3
		High	Patching of damaged concrete surface with polymer concrete / Shortcreting with cement concrete mixed with quick setting compound over prepared surface painted with epoxy.	16.9
3	spalling/cracking (with section loss)	High	Jacketing of distressed surface with concrete and steel reinforcement.	13.5
	Creaking	low and medium	Sealing of cracks with cement grout/epoxy resin by injection process.	16.5
4	Cracking	l High	Provide and fix nipples and seal the cracks with cement grout/ epoxy resin by injection process.	16.4 and 16.5
		low and	Exposed reinforcement should be thoroughly cleaned free of rust ,scales etc.	
F	Corregion	medium	before any treatment for spalling	
5	Corrosion	Hidn	Corroded reinforcement should be removed and replaced by additional reinforcement before treatment for spalling	14.2
6	Honeycombing/Leaching		Apply Epoxy mortar/ Polymer mortar	16.8
7	Loss of mortar in Brick/Stone masonry	Medium and high	Pointing with cement mortar 1:3 or plastering with cm :3	13.2 and 13.5
8	Loss of Brick/ stone		Remove loose masonry and replace with brick/stone masonry in cement mortar	12.5
0	masonry in sub structure		1:3	,13.1,13.4
9	Damage of Expansion Joint	Medium and high	Repair /Replace Expansion Joints	1 <mark>6</mark> .17
10	Damage of Railing		Replace / repair damaged railing	16.18, 16.22

Rehabilitation Cost

	Co	st of Rehabi	litation per So	գm.			
Rating	SHI		Span Range				
		0 - 30	30 - 60	>60			
Good	1 - 8				250		
Fair	8 - 16	1122	683	206	403		
Poor	16 - 81	2581	2772	741	2685		
Very Poor	81 - 256		New E	Bridge			

	Total cost for Rehabilitation per Bridge											
Rating	SHI		Average									
		0 - 30	30 - 60	>60								
Good	1											
Fair	1 - 16	1.11 Lac	1.41 Lac	1.09 Lac	1.20 Lac							
Poor	Poor 16 - 81		4.95 Lac	3.39 Lac	3.78 Lac							
Very Poor	81 - 256											

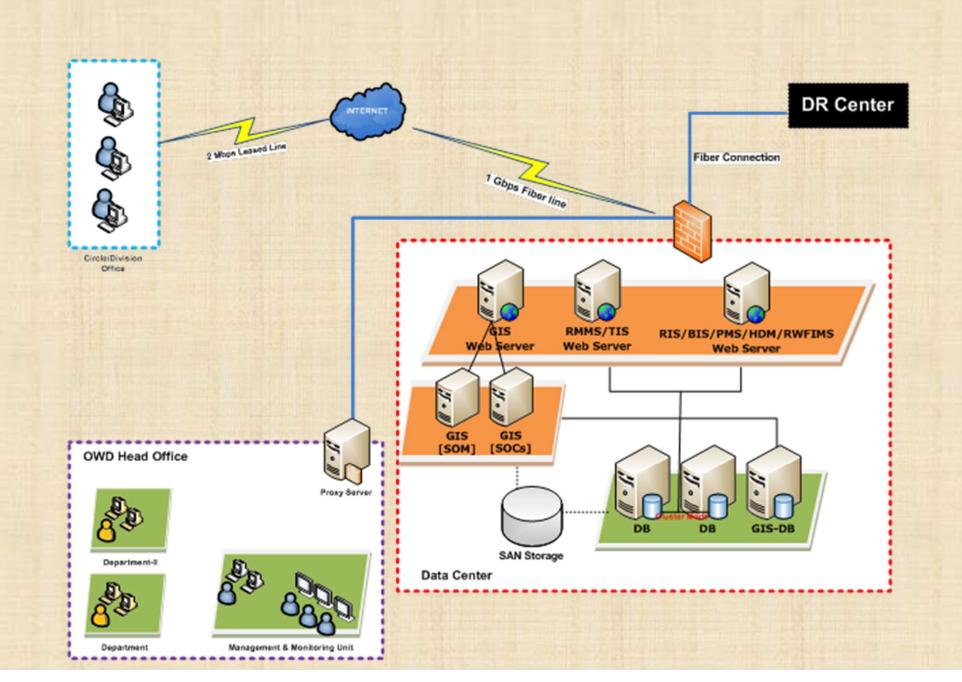
Minor Bridge on Badasankha Nallah at Km 7.1 of Chatrapur-Ganjam Road

Structural Health Index (SHI) for Bridge – Example

Item	Element	Total	Units			ed quantity in condition states		ESCI	Si	Mi	ESCI*Si*M	
	description	description	quantity		1	2	3	4	(Eq1)			
	•		22	No damage	Sevirity: Low	Sevirity: Medium	Sevirity: High					
1	Bearing	0.00	each	0.00	0.00	0.00	0.00	0.000	3	3	0	
2	Abutment & dirt wall	48.72	m2	0.00	0.00	0.00	48.72	4.000	2	2	16.00	
3	Wing Wall	113.54	m2	93.67	19.87	0.00	0.00	1.175	2	2	4.70	
4	Concrete deck Slab	126.00	m2	47.25	0.00	0.00	78.75	2.875	3	2	17.25	
5	Concrete abutment & pier caps	11.59	m3	0.00	11.59	0.00	0.00	2.000	4	2	16.00	
6	Piers	100.39	m2	66.51	2.51	0.00	31.37	1.963	4	2	15.70	
7	RCC / PSC/Steel girder	135.00	m2	50.63	0.00	0.00	84.38	2.875	4	1	11.50	
8	Expansion joints	22.40	m	0.00	0.00	22.40	0.00	3.000	1	3	9.00	
9	Approach carriageway	39.20	m2	39.20	0.00	0.00	0.00	1.000	1	3	3.00	
10	Batter protection	160.75	m2	0.00	0.00	0.00	160.75	4.000	1	2	8.00	
11	General cleaning	0.00	each	0.00	0.00	0.00	0.00	0.000	1	3	0.00	
12	Wearing surface	105.75	m2	0.00	105.75	0.00	0.00	2.000	1	3	6.00	
13	waterway	3.00	each	3.00	0.00	0.00	0.00	1.000	1	3	3.00	
14	Parapet/Railing/Crash barrier	45.00	m	45.00	0.00	0.00	0.00	1.000	1	2	2.00	
15	Floor protection work	292.56	m2	0.00	0.00	0.00	292.56	4.000	1	2	8.00	
16	Foundation	0.00	m2	0.00	0.00	0.00	0.00	0.000	4	2	0.00	
	Σ(ESCI*SI*CPIL)							- 124			120.15	
				Α	E	R	I					
	CF=0411 A+0 120E+0. 107R+0.362I			4.00	4.00	3.00	3.00				3.53	
SHI=	=CF*{(ESCI*SI*MI)/n				SH	= 120.15 X 3.531 /	13	5			32.637	

Bridge Maintenance Strategy – Example

		D23_R03_CH - 7.16 - (Chatrapur Ganjam Road) (Old NH-5)				PO	OR < 30m
SI. No.	MORTH Ref.	Item description	Unit	Rate	Quantity	Amount ©	Remarks
1	2.3	Clearing and uprooting rank vegetation, bushes, shrubs, saplings etc including removal and disposal.	m2	10	LS	5 000	
4	<mark>16.</mark> 3	Guniting concrete surface with cement mortar applied with compressor after cleaning surface and spraying with epoxy complete as per Technical specification (25mm thick)	m2	1 255	90	113 374	Deck slab and caps
6		Jacketing of concrete surface and exposed steel reinforcement complete as per Technical specification using 200mm thick M 30 grade concrete including reinforcement(@ 40 kg per m3), formwork etc and all accessories to complete the work.	m2	2 223	149	331 474	Total abutment and pier
7		Supplying ,hoisting, fixing steel joists in superstructure including painting and all required materials complete.	tonne	75 000	2	150 000	For welding of steel joists
9	16.11	Anti corrosive painting to all steel joists including sand blasting	m2	91	135	12 285	and a second second
12	13.1	Brick masonry work in 1:3 in sub-structure complete excluding pointing and plastering, as per drawing and Technical Specifications	m3	5 143	2	10 286	For replacemen of severe
15	13.5	Plastering with cement mortar (1:3) on brick work in sub-structure as per Technical specifications	m2	100	20	1 987	Wing wall
17	16.5	Sealing of crack / porous concrete with cement grout by injection process through nipples / grouting complete as per clause 2803.1.	kg	66	9996	659 704	For grouting in pier and abutments
20	15.4	Providing and laying Pitching on slopes laid over prepared filter media including boulder apron laid dry in front of toe of embankment complete as per drawing and Technical specifications.	m3	1 289	48	62 164	For slope
21	15.5	Providing and laying Filter material underneath pitching in slopes complete as per drawing and Technical specification.	m3	962	24	23 197	protection worl
22		Construction of toewall for pitching slope	m3	3 482	20	71 377	
24	20	Construction of Cut off wall for bed protection with m15 grade cement concrete	m3	4 792	73	350 774	Floor protection
25		Providing and laying rouble stone flooring laid in cement mortar 1:3 as per drawing and technical specification laid over cement concrete bedding.	m3	4 778	66	314 517	work
34	8.3	Printing new letter and figures of any shade (Printing new letter and figures of any shade with synthetic enamel paint black or any other approved colour to give an even shade)	Each bridge	611	2	1 222	
35		Safety measures, traffic regulation, scaffolding and other logistic arrangement for execution of works		10 000	LS	10 000	
36	20	Provision for miscellaneous items not accounted for			LS	30 000	
				Т	otal Cost :	2147 360	


Item	Element description	Total quantity	Units			ed quantity in condition states		ESCI (Eq1)	Si	Mi	ESCI*Si*Mi			
_	description	quantity		1	2	3	4	(Edt)						
				No damage	Sevirity: Low	Sevirity: Medium	Sevirity: High							
1	Bearing	0	each	0.00	0.00	0.00	0.00	0.000	3	3	0	0	Year of construction	T
2	Abutment & dirt wall	65.12	m2	65.12	0.00	0.00	0.00	1.000	2	2	4.00	1	Road type	SH
3	Wing Wall	82.14	m2	82.14	0.00	0.00	0.00	1.000	2	2	4.00	1	Number of Span	7
4	Concrete deck Slab	517.44	m2	506.35	0.00	0.00	11.09 .	1.064	3	2	6.39	-	Each span length(m)	8.4
5	Concrete abutment & pier caps	82.97	m2	78.82	4.15.	0.00	0.00	1.050	4	2	8.40		Width of bridge(m)	8.8
6	Piers	367.69	m2	367.69	0.00	0.00	0.00	1.000	4	2	8.00	1	Total plan area(m^2)	517.4
7	RCC / PSC/Steel girder	0.00	m2	0.00	0.00	0.00	0.00	0.000	4	2	0.00	0	Number of pier	6
8	Expansion joints	70.40	m	70.40	0.00	0.00	0.00	1.000	1	3	3.00	1	Top width of pier(m)	0.8
9	Approach carriageway	61.60	m2	58.52	3.08	0.00	0.00	1.050	1	3	3.15	1	Bottom width of pier(m)	1
10	Batter protection	116.30	m2	116.30	0.00	0.00	0.00	1.000	1	2	2.00		Height of pier(m)	3
11	General cleaning	0.00	each	0.00	0.00	0.00	0.00	0.000	1	3	0.00		Length of return/wing wall(m)	5.5
12	Wearing surface	435.12	m2	413.36	21.76	0.00	0.00	1.050	1	3	3.15	1	Number of bearings	0
13	waterway	7.00	each	7.00	0.00	0.00	0.00	1.000	1	3	3.00	1	Thickness of superstructure (m)	0.7
14	Parapet/Railing/Crash barrier	117.60	m	117.60	0.00	0.00	0.00	1.000	1	2	2.00	1	width of bridge between kerbs	7.4
15	Floor protection work	0.00	m2	0.00	0.00	0.00	0.00	0.000	1	3	0.00	0	Thickness of caps	0.6
16	Foundation	0.00	m2	0.00	0.00	0.00	0.00	0.000	4	2	0.00	0	Depth of girder	0
	Σ(ESCI*SI*CPIL)										47.0857143	11	No of girder per span	0
				A	E	R	1							
	CF=0411 A+0 120E+0. 107R+0.362I			4.00	3.00	3.00	3.00				3.41			
SHI	=CF*{(ESCI*SI*MI)/n				SHI = 47.0	0857142857143 X 3.4	411 / 11				14.602			
OSCI OSCI						16 <shi<81< td=""><td></td><td></td><td></td><td></td><td>OSCI = 2</td><td></td><td></td><td></td></shi<81<>					OSCI = 2			

		D31_R02_CH 23.27 - (Papadhandi-Umerkote-Yerla Road)				FAIR	> 30m
SI. No.	MORTH Ref.	Item description	Unit	Rate S	Quantity	Amount ඉ	Remarks
1	2.3	Clearing and uprooting rank vegetation, bushes, shrubs, saplings etc including removal and disposal.	m²	10	LS	5 500	
2		Cleaning and Greasing of Metallic bearings complete as per Technical specification	no.	1 093	0	0	NA
3	16.8	Applying epoxy mortar over leached, honey combed and spalled concrete surface and exposed steel reinforcement complete as per Technical specification (10mm thick)	m²	537	4 _	2 228	
4	16.3	Guniting concrete surface with cement mortar applied with compressor after cleaning surface and spraying with epoxy complete as per Technical specification (25mm thick)	m²	1 168	0	0	
5	16.6	Patching of damaged concrete surface with polymer concrete and curing compounds, initiator and promoter, available in present formulations, to be applied as per instructions of manufacturer and as approved by the	m²	2 580	11	28 607	
6		Jacketing of concrete surface and exposed steel reinforcement complete as per Technical specification using 200mm thick M 30 grade concrete including reinforcement(@ 40 kg per m3), formwork etc and all accessories to complete the work.	m²	2 214	0	0	NA
7		Supplying ,hoisting, fixing steel joists in superstructure including painting and all required materials complete.	tonne	75 000	0	0	NA
8	14.2	Supplying, fitting and placing HYSD bar reinforcement complete as per drawing and technical specifications	tonne	68 793	0	0	
9		Drilling of holes in existing concrete and fixing new reinforcement with epoxy mortar grout but excluding cost of reinforcement	no.	423	0	0	NA
10	16.11	Painting to all steel joists.	m²	100	0	0	
11	12.5	Brick masonry work in cement mortar 1:3 in foundation complete excluding pointing and plastering, as per drawing and technical specifications	m³	5 153	0	0	NA
12	13.1	Brick masonry work in 1:3 in sub-structure complete excluding pointing and plastering, as per drawing and Technical Specifications	m³	5 238	0	0	NA
13	13.4	Stone masonry work in cement mortar 1:3 for substructure complete as per drawing and Technical Specifications	m³	3 570	0	0	NA
14	13.2	Pointing with cement mortar (1:3) on brick work/stone work in substructure as per Technical specifications	m²	41	0	0	NA
15	13.5	Plastering with cement mortar (1:3) on brick work in sub-structure as per Technical specifications	m²	105	0	0	NA
16	16.4	Providing and inserting nipples with approved fixing compound after drilling holes for grouting as per Technical Specifications including subsequent cutting/removal and sealing of the hole as necessary of nipples after completion of grouting with Cement/Epoxy	no.	501	0	o	NA
17	16.5	Sealing of crack / porous concrete with cement grout by injection process through nipples / grouting complete as per clause 2803.1.	kg	66	0	0	NA
18	16.7	Sealing of crack / porous concrete with Epoxy Grout by injection through nipples complete as per clause 2803.1.	kg	925	0	0	NA

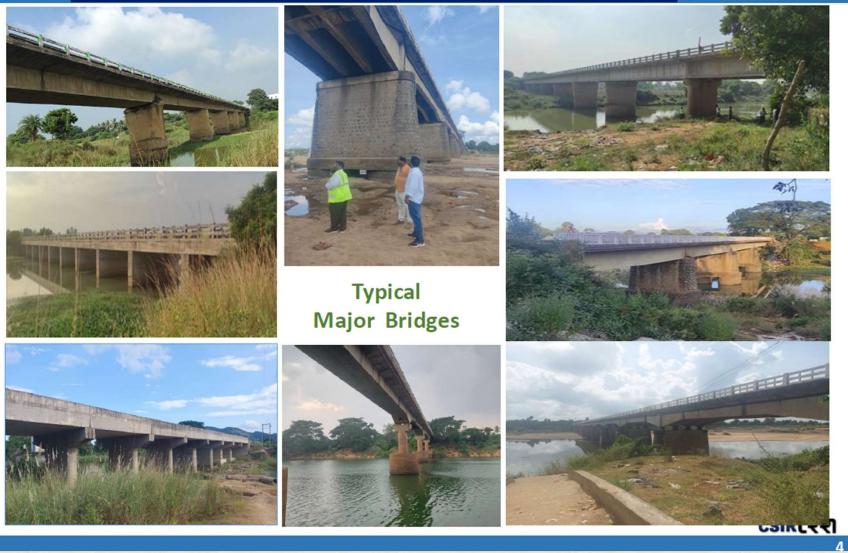
SI.	MORTH	D31_R02_CH 23.27 - (Papadhandi-Umerkote-Yerla Road)				FAIR	> 30m
No.	Ref.	Item description	Unit	Rate ඉ	Quantity	Amount ତ	Remark
19	16.17	Replacement of Expansion Joints complete as per drawings	m	2 654	0	0	
20	15.4	Providing and laying Pitching on slopes laid over prepared filter media including boulder apron laid dry in front of toe of embankment complete as per drawing and Technical specifications.	m³	1 231	0	o	Stone
21	15.5	Providing and laying Filter material underneath pitching in slopes complete as per drawing and Technical specification.	m³	905	0	0	Filter materia
22	15.11	Flexible Apron: Construction of flexible apron 1 m thick comprising of loose stone boulders weighing not less than 40 kg beyond curtain wall.	m³	1 190	0	0	
23		Construction of Cut off wall for bed protection with m15 grade cement concrete	m³	4 948	0	0	NA
24		Providing and laying rouble stone flooring laid in cement mortar 1:3 as per drawing and technical specification laid over cement concrete bedding.	m³	4 896	0	0	NA
25		Removal of existing asphaltic wearing coat comprising of 50 mm thick asphaltic concrete laid over 12 mm thick mastic asphalt including disposal with all lift and lead upto 1000m.	m²	47	22	1 023	
26	5.14	Providing and laying in position 65 mm thick wearing coat consisting of 25mm thick layer of mastic asphalt over 40 mm bituminous concrete over deck slab after applying prime coat complete as per drawings and technical specification sections 500 and 2700 or as directed by the Engineer.	m²	1 356	22	29 501	
27	14.4	Providing and laying Cement concrete wearing coat M-30 grade including reinforcement complete as per-drawing and Technical Specifications	m3	11 592	0	0	
28		Providing new guard post in both side of carriage way as per technical specifications.	no.	800	0	0	NA
29	16.18	Replacement of Damaged Concrete Railing.	m	2 035	0	0	NA
30	16.22	Repair of RCC Railing	m	122	0	0	
31	14.9	Providing Drainage Spouts complete as per drawing and Technical specification	no.	1 1 1 4	0	0	NA
32	8.3	Printing new letter and figures of any shade (Printing new letter and figures of any shade with synthetic enamel paint black or any other approved colour to give an even shade)	Each bridge	611	2	1 222	
33		Safety measures, traffic regulation, scaffolding and other logistic arrangement for execution of works		10 000	LS	10 000	
34		Provision for miscellaneous items not accounted for			LS	20 000	
				Tot	tal Cost :	98 080	

IT Enabled Solution & Procurements

O-RAMS Implementation Architecture

Log-in Details

Works Department Goverment Of Odisha


designed and developed by LEA Associates South Asia Pvt. Ltd.

O-RAMS home page

Condition Assessment of Bridges under PWD, Odisha

Training imparted so far

Field training on Data Collection (during consultant's data collection in various circles)

Training imparted so far

Automatic Road Survey System (ARSS) by CRRI

Institutional Arrangements for Sustainability

1. Dedicated AMS Cell

- In-house Trained Engineering Team
- Handholding for technology transfer

2. Use of Local Resources

- Dedicated IT (GIS & DBA) Team from NIC & IT Department
- ORSAC for spatial data (new network inclusion)

3. Outsourcing Data Collection

- Automated Data (Pavement Condition, Roughness, Geometry, FWD)
- Traffic and Bridge Condition Data

Odisha Road Asset Management System(O-RAMS)

Works Department, Govt of Odisha

Consultant

LEA Associates South Asia Pvt. Ltd. India In JV with LEA International Ltd. Canada in association with Geo InfoSpace Private Ltd. (GIPL), India

COTS Software "EXOR"

By Bentley Systems(India)Pvt Ltd.

O-RAMS Modules Web-based Applications

- 1. Road Information System (RIS)
- 2. Bridge Information System (BIS)

Bridge Inventory & Condition

Road Network & Data Management

3. Pavement Management System (PMS)

Interface to HDM-4

4. Traffic Information System (TIS) Traffic Data processing for RIS/PMS modules
5. Web-GIS View & Reporting Tools GIS based search, satellite image overlay, thematic maps
6. Routine Maintenance Management System (RMMS) Estimate for Routine Maintenance Requirements

Lunching of O-RAMS Website- 2015 www.orams.in

Thank you

Mahindra

NH-47TC095-013