
SUSTAINABLE PAVEMENTS

"MEETING THE NEEDS OF THE PRESENT WITHOUT COMPROMISING THE ABILITY OF FUTURE GENERATIONS TO MEET THEIR OWN NEEDS"

HOW DO WE REDUCE CONSTRUCTION TIME

CT – CONVENTIONAL TECHNOLOGY AT – ALTERNATE TECHNOLOGY

NATIONAL HIGHWAY CONSTRUCTED WITH ALTERNATE TECHNOLOGY SAVING 57% OF CONSTRUCTION TIME

> LOCATION: NH-58, DESIGN MSA: 80 MSA

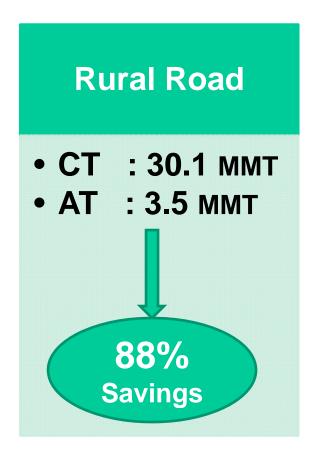
STATE HIGHWAY CONSTRUCTED WITH ALTERNATE TECHNOLOGY SAVING 37% OF CONSTRUCTION TIME

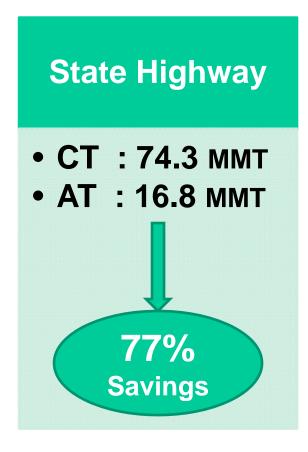
> LOCATION: SH-45 UK, DESIGN MSA: 80 MSA

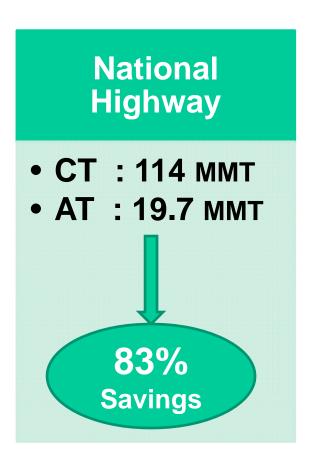
RURAL ROAD CONSTRUCTED WITH ALTERNATE TECHNOLOGY

SAVING 83% OF CONSTRUCTION TIME

> LOCATION : TAMIL NADU


HOW DO WE REDUCE DESTRUCTION OF HILLS FOR AGGREGATES





BEFORE AFTER

HOW DO WE REDUCE CONSUMPTION OF AGGREGATES IN ROAD CONSTRUCTION

CT – CONVENTIONAL TECHNOLOGY AT – ALTERNATE TECHNOLOGY

STATE HIGHWAY CONSTRUCTED WITH ALTERNATE TECHNOLOGY

SAVING 83% OF AGGREGATES

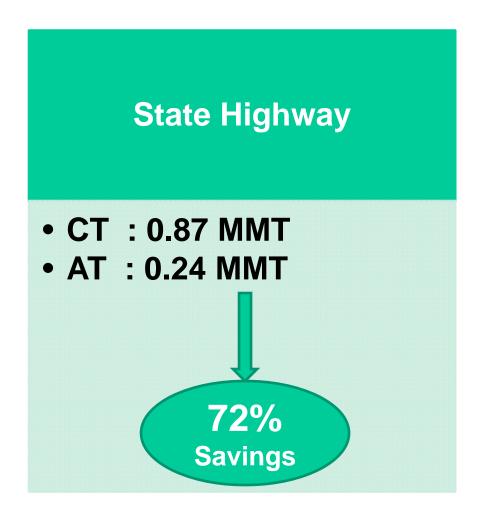
➤ LOCATION : SH-48 KTK DESIGN TRAFFIC: 50 MSA

RURAL ROAD CONSTRUCTED WITH ALTERNATE TECHNOLOGY

SAVING 88% OF AGGREGATES

> LOCATION: KARNATAKA

EXPRESSWAY CONSTRUCTED WITH ALTERNATE TECHNOLOGY SAVING 77% OF AGGREGATES


> LOCATION (BENGALURU – MYSORE), DESIGN TRAFFIC 150 MSA

HOW DO WE REDUCE CONSUMPTION OF BITUMEN IN ROAD CONSTRUCTION & ITS IMPACT ON ENVIRONMENT

HOW DO WE REDUCE CONSUMPTION OF BITUMEN IN ROAD CONSTRUCTION

CT – CONVENTIONAL TECHNOLOGY AT – ALTERNATE TECHNOLOGY

STATE HIGHWAY ROAD CONSTRUCTED WITH ALTERNATE TECHNOLOGY REDUCING 70% OF BITUMEN

> LOCATION- KATRA, J&K DESIGN TRAFFIC: 30 MSA

NATIONAL HIGHWAY ROAD CONSTRUCTED WITH ALTERNATE TECHNOLOGY REDUCING 72% OF BITUMEN

> LOCATION- NH-22 (HP)

DESIGN TRAFFIC 60 MSA

HOW DO WE REHABILITATE DAMAGED ROADS REDUCING USAGE OF MATERIALS

REHABILITATION BY COLD INSITU RECYCLING RECLAIMING 100% MATERIAL OF EXISTING PAVEMENT

(LOCATION:NH-206)

CONSTRUCTION OF AIRSTRIP USING ALTERNATE TECHNOLOGY

AT AN ALTITUDE OF ABOUT 14000 FT ABOVE MEAN SEA LEVEL

REDUCED CONSUMPTION OF AGGREGATE BY – 100%

REDUCED CONSTRUCTION TIME BY – 92% (CONSTRUCTED IN 67 DAYS AS COMPARED TO 913 DAYS IN CONVENTIONAL METHOD)

HOW DO WE REDUCE CRUST THICKNESS AS PER IRC:37

Design Traffic : 150 MSA

> Design CBR : 3 %

Conventional	Llocido

50 mm, BC (1 Layer)

170 mm, DBM (2 Layers)

250 mm, WMM (2 Layers)

380 mm, GSB (2 Layers)

Stabilized Pavement Design

50 mm, BC (1 Layer)

50 mm, DBM (1 Layer)

230 mm, Stabilized Base (2 Layers)

250 mm, GSB (1 Layer)

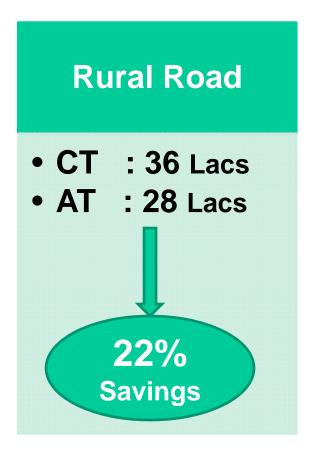
REDUCTION IN CRUST THICKNESS BY 32%

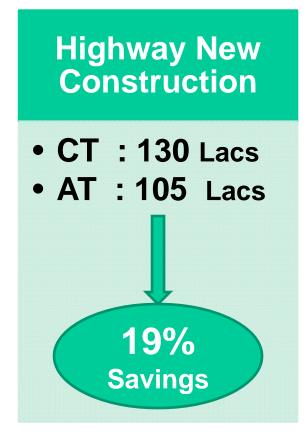
TOTAL: 580 mm (5 Layers)

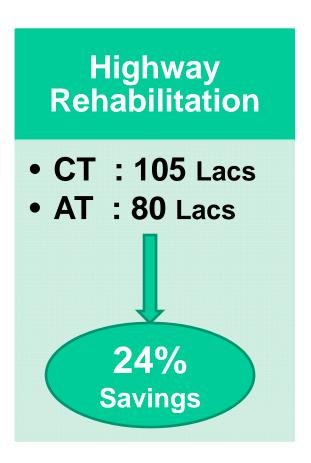
TOTAL: 850 mm (7 Layers)

HOW WE SAVED CARBON FOOTPRINTS IN RURAL ROAD AT MATIGATTA VILLAGE (REF. CHANGER)

S.NO	CONSTRUCTION ACTIVITIES	CONVENTIONL METHOD t CO₂ eq.	WITH NEW TECHNOLOGY t CO₂eq.
1.a	Clearing and Piling: Machines	0.19	0.09
1.b	Clearing and Piling: Vegetation	0.00	0.00
2. a	Cut transport	0.00	0.00
2.b	Fill transport	1.85	1.47
3.a	Onsite Impacts: Electricity	0.00	0.00
3.b	Onsite Impacts: Transport fuel usage	4.64	3.44
4	Construction materials :	10.47	13.14
5	Materials transport :	27.38	11.10
6	Construction machines :	1.58	1.69
	Total CO2 equivalent emissions	46.11	30.94
Percentage Reduction in Carbon Footprint		32.91	


HOW WE SAVED CARBON FOOTPRINTS IN NH 206 WIDENING (REF. CHANGER)


S.NO	CONSTRUCTION ACTIVITIES	CONVENTIONL METHOD t CO₂ eq.	WITH NEW TECHNOLOGY t CO₂eq.
1.a	Clearing and Piling: Machines	0.00	0.00
1.b	Clearing and Piling: Vegetation	0.00	0.00
2. a	Cut transport	3.99	3.70
2.b	Fill transport	0.00	0.51
3.a	Onsite Impacts: Electricity	0.00	0.00
3.b	Onsite Impacts: Transport fuel usage	8.26	8.65
4	Construction materials :	35.20	22.07
5	Materials transport :	57.83	34.94
6	Construction machines :	2.67	2.67
	Total CO2 equivalent emissions	107.94	65.27
Percentage Reduction in Carbon Footprint		39.53	


HOW WE SAVED CARBON FOOTPRINTS IN REHABILITATION OF ROAD NH-206 (REF. CHANGER)

S.NO	CONSTRUCTION ACTIVITIES	CONVENTIONL METHOD t CO₂ eq.	WITH NEW TECHNOLOGY t CO₂eq.
1.a	Clearing and Piling: Machines	0.00	0.00
1.b	Clearing and Piling: Vegetation	0.00	0.00
2. a	Cut transport	40.07	0.00
2.b	Fill transport	21.97	0.00
3.a	Onsite Impacts: Electricity	0.00	0.00
3.b	Onsite Impacts: Transport fuel usage	21.47	8.26
4	Construction materials :	124.91	53.84
5	Materials transport :	105.04	72.83
6	Construction machines :	2.23	2.13
	Total CO2 equivalent emissions	315.68	137.05
Percentage Reduction in Carbon Footprint		56.58	

HOW WE REDUCE CONSTRUCTION COST

CT – CONVENTIONAL TECHNOLOGY AST – ALTERNATE TECHNOLOGY

ALTERNATE TECHNOLOGY USED.....

RBI GRADE-81 STABILIZATION TECHNOLOGY USED FOR SUSTAINABLE LONG LASTING PAVEMENTS

