

Use of Cold Mix Technology in Construction and Maintenance of Roads Using Bitumen Emulsion

4th Oct, 2013 (IRF)

Prof. (Dr). P. K. Jain Chief Scientist and Head Flexible Pavement Division CSIR-Central Road Research Institute, New Delhi pramodj.crri@nic.in

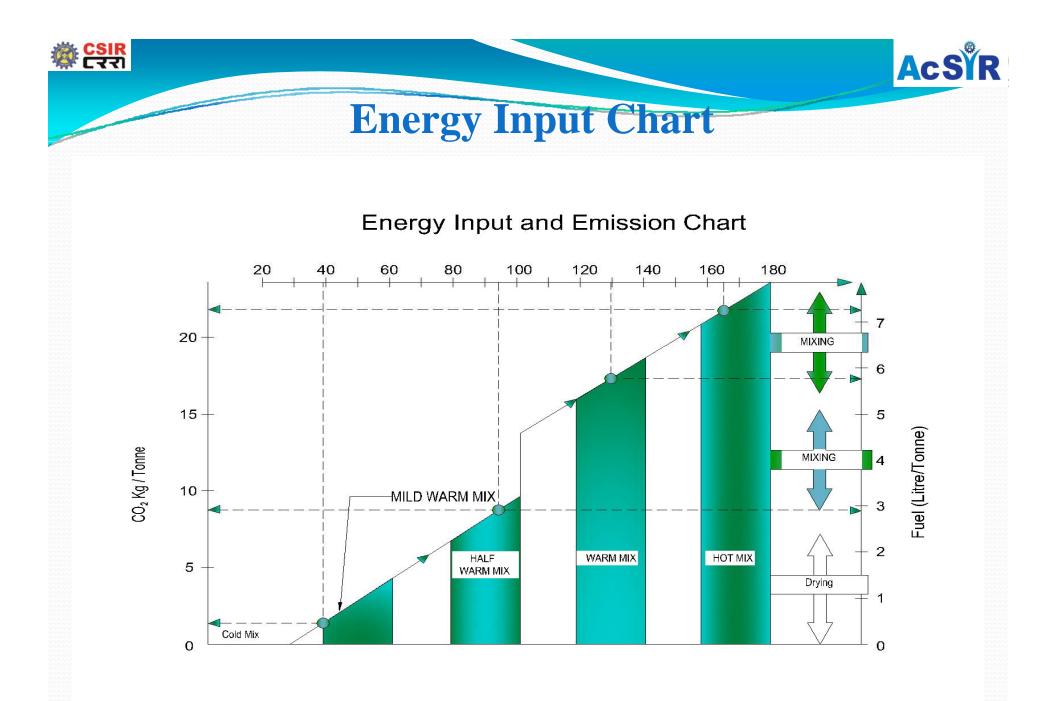
Introduction

- ✓ Flexible (bituminous) pavements constitute over 90% of the total road network including airfield pavements
- ✓ Hot mixed bituminous materials and mixes are generally used for the construction of base course, binder course and wearing course of flexible pavement
- ✓ The paving bitumen (VG-10, VG-20, VG-30 and VG-40; as per IS:73), is used as a bituminous binder
- Modified bitumen, cutback and bitumen emulsions are alternate binders

Hot Mix Technologies - Overview

- ✓ Heating of binder at 165°C
- ✓ Heating of aggregates at 155°C for hot mix
- ✓ Production of hot mix at 150°C
- ✓ Laying of hot mix at 135°C
- ✓ Compaction of hot mix at $135^{\circ}C$

Disadvantages of hot mix technologies


- ✓ Noise and air pollution
- ✓ Emission of green house gases
- Compromise with the durability of bitumen due to aging
- ✓ High energy consumption
- ✓ Unsafe for maintenance crew

Technical Solutions

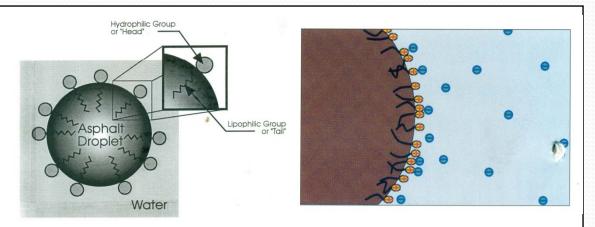
- ✓ Cold mix technologies (mixes produced using unheated aggregate and cold emulsion binder)
- ✓ Mild warm mix technologies (mixes produced using mild warm aggregate and mild warm binder)
- ✓ Half warm mix technologies (mixes produced using half warm aggregate and warm binder)
- ✓ Warm mix technologies (mixes produced using partially heated aggregate and partially heated binder containing additive)

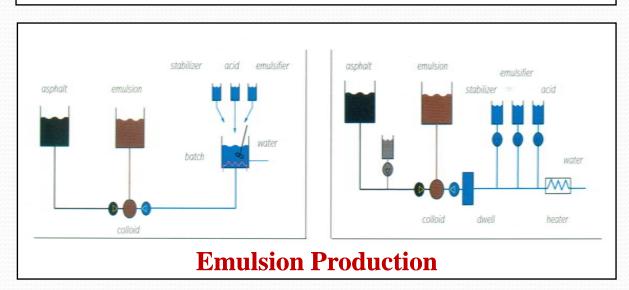
Emulsion Based Technologies (IRC Guidelines)

Surface Treatment	Maintenance Including Periodic		Other
Including	Treatments		Applications
Preventive and	Cold Mixes	Half Warm and	
Corrective		Mild Warm	
Maintenance		Mixes	
Fog Seal	> Patching	Semi-Dense	Prime Coat
Sand Seal	> Pothole Repair	Mixes	Tack Coat
Slurry Seal	> Cold Recycling	Dense Mixes	Crack
> Microsurfacing	> Bituminous		Sealing
Cape Seal	Macadam		> Soil
Chip Seal	> Premix Carpet		Stabilization
	Mix Seal		
	Surfacing		
	Semi-Dense		
	Bituminous		
	Concrete		

Bitumen Emulsion

An emulsion is defined as a mixture of two immiscible liquids, one of which is dispersed in the other in the form of very fine droplets. The process of emulsification is accomplished by the use of an emulsifier. A colloid mill is generally used for the preparation of an emulsion by dispersion of bitumen in water.


Bitumen emulsion is a heterogeneous two phase systems consisting of two immiscible liquids such as bitumen and water. Bitumen is dispersed throughout the continuous water phase in the form of discrete globules, typically 0.1 micron to 50 micron in diameter, which are held in suspension by electrostatic charges stabilised by an emulsifier



Production and Handling of Bitumen Emulsion

- ✓ Bitumen
- ✓ Water
- ✓ Emulsifier
- ✓ Acid or Caustic
- ✓ Polymers
- ✓ Solvents
- ✓ Additives
- ✓ Stabilizers
- ✓ Buffers

Structure of Cationic Bitumen Emulsion

Advantages of bitumen emulsion in road construction

- Cold application
- Eliminates heating
- Environment friendly technology
- Energy conservation due to elimination of heating
- Coats damp aggregates
- Non polluting process
- Construction in all weathers
- contains anti-stripping agents
- Lesser manpower
- Increased work year

Recommended Uses for Different Types of Emulsion

Туре	Recommended Uses	
RS-1	A quick setting emulsion used for tack coat	
RS-2	A quick setting emulsion used for Surface treatment, Surface	
	dressing, Penetration Macadam, Penetration Grouting	
MS	A medium setting emulsion used for plant or road mixes with	
	coarse aggregate for premix carpet and surface dressing	
SS-1	A slow setting emulsion used for priming	
SS-2	A slow setting emulsion used for plant mixes with graded fine	
	aggregate in SDBC, MSS, BM, DBM and BC. This emulsion	
	is also used for slurry seal treatment and tack coat	
Modifie	Modified emulsion is used for microsurfacing	
d		

Cold Mixed Open Graded Premix Carpet

S. No.	Premix Carpet	
(a)	Coarse aggregate of nominal 13.2 mm size: passing IS 22.4 mm sieve and retained on IS 11.2 mm sieve	0.18 m ³
(b)	Coarse aggregate of nominal 11.2 mm size; passing IS 13.2 mm sieve and retained on IS 5.6 mm sieve	0.09 m ³

(A)	For Premix Carpet (MS) 20 to 23 kg		
(B)	For Seal Coat		
(i) For Liquid seal coat (RS-2)	12 to 14 kg	
(i	i) For Premix seal coat (SS-2)	10 to 12 kg	

Preparation of Cold Mix (OGPC)

- Charge 13.2 mm and 9.5 mm size aggregates in 2:1 ratio in a concrete mixer
 - Add optimum water content about 2 % by wt. of aggregate
- Add bitumen emulsion of medium setting (M.S.) @ 5% by wt. of aggregates
- Mix for uniform coating of aggregate
 - Mixing beyond 2 minutes to be avoided

Transportation of cold mix

- ✓ Cold mix discharged in trolleys/wheel barrow
- ✓ Cold mix transported to site by wheel barrow
- ✓ Avoid newly laid surface or tacky road surface while ferrying

Spreading of cold mix

- ✓ Spread cold mix in half the road-width
- ✓ Required thickness with spreader
- Cold mix turned black from brown
- ✓ Cold mix aerated for about 2 hours

Compaction

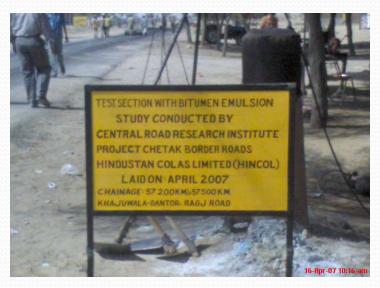
- ✓ Compacted with 8-10 ton road roller
- ✓ Wetting of wheels

Sand seal coat

- ✓ Cold mix of fine aggregates mixture with emulsion (SS)
- ✓ Spread the mix on open graded surface
- ✓ Compact with 8-10 tonne roller

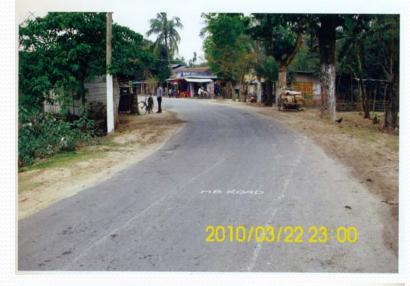
Liquid seal coat

- ✓ Tack coat with emulsion (RS Grade) @ 12-13kg / 10 m2
- ✓ Aggregates 6.3 mm(passing)- 180 micron (Retained)
- ✓ Compact with 8-10 tonne road roller



Laying & Compaction of Cold Mix

👹 CSIR Cररा



Performance of Rural Roads with Cold Mix Technologies

(PHOTOGRAPHS OF M.B. ROAD ON DATED 22/03/2010)

(PHOTOGRAPHS OF M.B. ROAD)

Performance of Rural Roads with Cold Mix Technologies

(PHOTOGRAPHS OF M.B. ROAD)

👹 CSIR

(PHOTOGRAPHS OF M.B. ROAD)

(PATKATA KAYAJAN ROAD, NALBARI)

(PATKATA KAYAJAN ROAD, NALBARI)

Technologies

(Rajmai to Rajabari Road, Sibsagar, Assam)

(Rajmai to Rajabari Road, Sibsagar, Assam)

(Koibarta Village to Maloibari , Maloipathar, Jorhat)

(Koibarta Village to Maloibari , Maloipathar, Jorhat)

(NH-52 to RAJKHOWAPARA, BEJERA, KAMRUP, ASSAM)

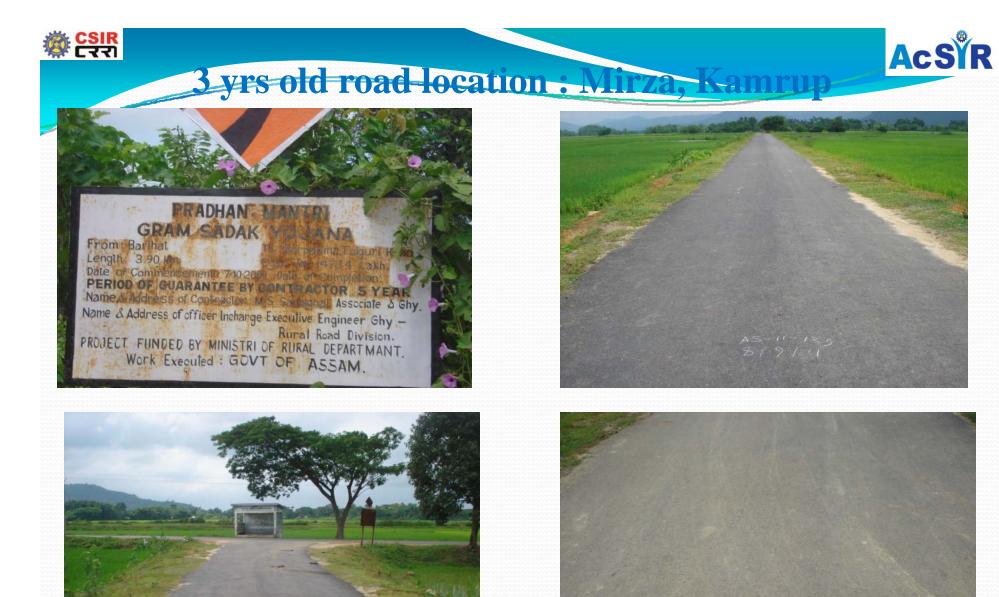
(NH-52 to RAJKHOWAPARA, BEJERA, KAMRUP, ASSAM)

(NH-52 to RAJKHOWAPARA, BEJERA, KAMRUP, ASSAM)

(NH-52 to RAJKHOWAPARA, BEJERA, KAMRUP, ASSAM)

(Bongshor to Suwalkushi Road, Suwalkushi, kamrup, Assam)

(Bongshor to Suwalkushi Road, Suwalkushi, kamrup, Assam)



AS-11-129 819111

Cold Mixed Bituminous Macadam (CMBM)

Bituminous Macadam (BM) is a graded bituminous mixture suitable for moderate traffic roads used for construction of bituminous base course as well as for strengthening of flexible pavements

Cold Mixed Bituminous Macadam(CMBM) shall involve construction of one or more courses of 50mm thick compacted mixture prepared with bitumen emulsion and mineral aggregate, laid immediately after mixing to required grade and camber using appropriate machinery

Recommended emulsion is SS-2 grade (IS: 8887)

AcSTR

👹 CSIR Cररा

Sieve size, mm	Percent passing by weight
26.5	100
19.0	90-100
13.2	56-88
9.5	20-55
4.75	16-36
2.36	4-19
0.30	2-10
0.075	1 - 4
Sand Equivalent Value (ASTM D2419)	50 Minimum
Percent Crushed Faces	75% Minimum
Bitumen Emulsion (SS2) % by Weight of	5% Minimum
Mix	

Cold Mixed Semi Dense Bituminous Concrete (CMSDBC)

Semi dense bituminous concrete (SDBC) is a continuously graded mix, which can be used as binder course or wearing course in a flexible pavement. This section deals with the design and construction of 40 mm thick Cold Mixed SDBC using cationic bitumen emulsion. Recommended Emulsion is SS-2

Mixture Design of CM BM

👹 CSIR Cररो

(i)	Number of compaction blows on each side of	50
	Marshall specimen	50
(ii)	Marshall Stability at 25°C in kg (minimum), after	350
	curing the specimen in air and at 40°C for 3 days	550
(iii)	Marshall flow (mm) at 25°C	Max. 8
(iv)	Per cent voids in mixture	10 - 14
(v)	Binder content (residual bitumen) by weight of	3.5
	total mix (%),min	5.5
(vi)	Retained indirect tensile strength at 25°C after	50
	conditioning for 48 hours at 40 °C, %	30

Gradation of Aggregate in CMSDBC

👹 CSIR Cररा

Sieve Size (mm)	Percent Passing by Weight
13.2	100
9.5	90-100
4.75	35 -51
2.36	24-39
1.18	15-30
0.300	9-19
0.075	2-8
Sand Equivalent Value (ASTM D2419)	50 Min.
Percent Crushed Faces	75 Min.
Bitumen Emulsion(SS-2 or tailor made) by	8-10%
Weight of Mix	

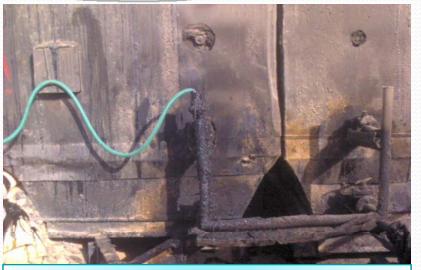
Requirements of Cold Mixed SDBC

👹 CSIR Cररा

(i)	Number of compaction blows on each side of Marshall specimen	50
(ii)	Marshall Stability at 25°C in kg (minimum), after curing the specimen at 50°C for 3 days	500
(iii)	Marshall flow (mm)	Max. 8
(iv)	Per cent voids in mixture	6 – 10
(v)	Binder content (residual bitumen) by weight of total mix (%),min	4.5
(vi)	Retained indirect tensile strength at 25°C after conditioning for 48 hours at 40 °C, %	75

Comparative cost of bituminous surfacing with emulsion and bitumen

S. No.	Specification	Thickness, mm	Binder	Cost / m ² , Rs.
1	SDBC	25	Bitumen	254
2	SDBC	25	Emulsion	276
3	OGPC	20	Bitumen	155
4	OGPC	20	Emulsion	160
5	CMBM	50	Emulsion	350
6	BM	50	Bitumen	325


Production of cold mixes with HM

Adding Pre-mix Water

Cold Mix on Conveyer Belt

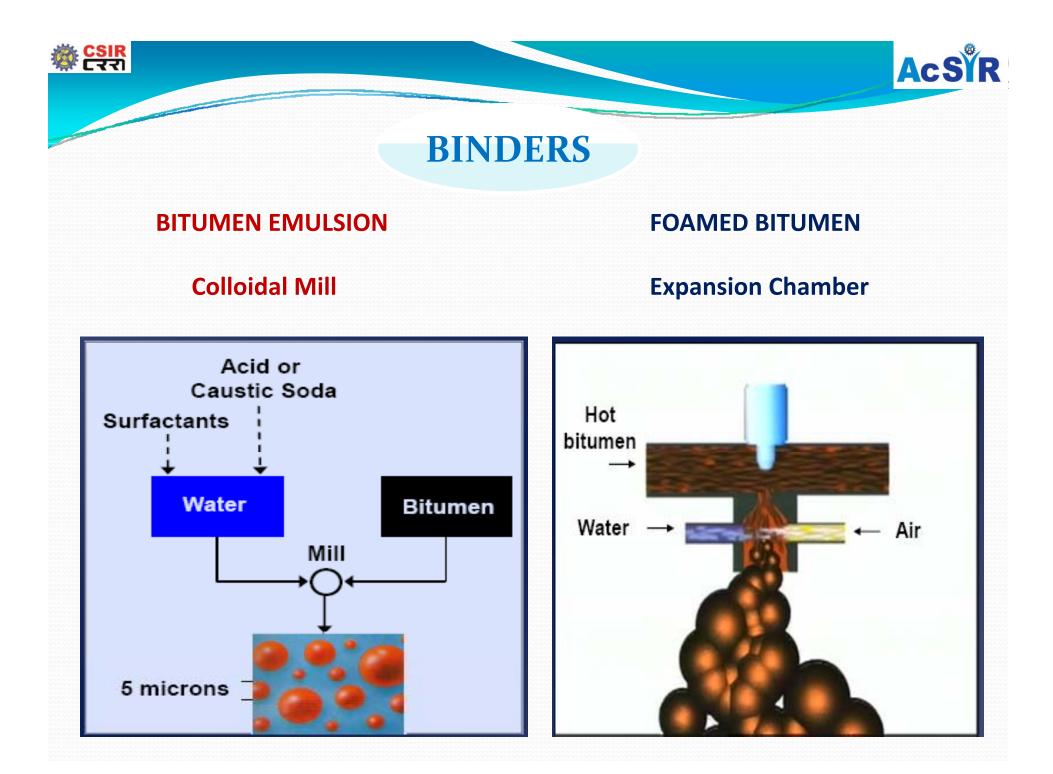
Adding Emulsion in Drum

Discharge of Cold Mix to Dumper

Materials/Technologies-18.02.201

conventional

AcSĨR



Half Warm Mixes Using Bitumen Emulsion

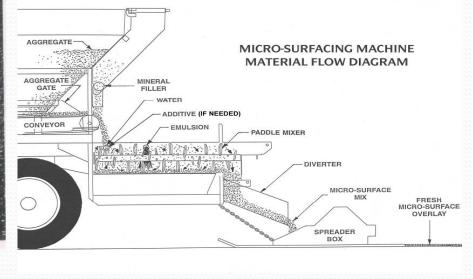
Half warm mixes are those mixes in which the bituminous binder is either a bitumen emulsion or foamed bitumen, which is manufactured and mixed with warm aggregates (100 ± 10 °C), laid and compacted a temperature between 75 – 85 °C.

Requirements of the warm mix prepared with bitumen emulsion

(i)	Number of compaction blows on each side of Marshall	75
	Specimen	
(ii)	Marshall Stability at 60°C in kg (minimum), after curing the	900
	Marshall Specimen for 24 h	900
(iii)	Marshall flow (mm)	Max. 5
(iv)	Per cent Voids in Mix	3-6
(v)	Binder content (Residual Bitumen) by weight of total mix	4.5
	(%),min	4.3
(vi)	Retained Marshall Stability, ratio	80

- Half warm bituminous mixtures are manufactured using cationic bitumen emulsion and have properties identical to hot bituminous mixture
- Performance properties like rutting resistance, indirect tensile strength ratio, resilient modulus and static creep test results are acceptable.

- ✓ The half warm bituminous mixture appears to have good coating, and workability at a temperature of 80 -90 °C
- ✓ Half warm bituminous mixture can be manufactured and laid with conventional construction equipments
- ✓ The energy saving due to reduced fuel consumption is high
- ✓ Half warm bituminous mix can be stored if laying is not feasible due to adverse weather
- ✓ Paving window is wider and reduces global warming


Microsurfacing for Maintenance of Roads

✓ A mixture consisting of :

- Dense-graded crushed aggregates
- Polymer / latex modified bitumen emulsion
- Water
- Mineral filler (cement)
- Chemical additive

✓ cold slurry paving system

Advantages of Mierosurfacing

- ✓ Dose not increase the pavement height (an advantage for city roads)
- ✓ Does not require heating of mix and compaction
- ✓ Does not affect the environment as well as human health
- ✓ Does not require too excessive manpower, machinery and equipments.
- ✓ Can be constructed during day and even night time
- ✓ Faster construction

Roads Laid with Microsurfacing in Delhi

Brigadiar Hoshiar Singh Marg (DBM + Microsurfacing) , March 2007

Rajaji Marg (SDBC + Microsurfacing) , Jan'08

Janpath (Double Microsurfacing) , June'07

Kamal Attaurk Marg (Single Microsurfacing), March'09

Reduction of Greenhouse Gas Emissions and Energy Consumption

Treatments	Environmental Effects			
	Energy (MJ)	CO ₂ (ton)	NO _x (kg)	SO _x (kg)
Milling 50mm and Paving 50mm Recycled Hot Mix	369,79,237	1918	16,821	5,24,944
Milling 50mm and Paving 50mm with Warm Mix Asphalt	261,79,936	1096	8821	3,67,532
50mm Hot In-place Recycled mix	310,62,559	1479	13,095	4,09,447
10 mm Microsurfacing	30,92,958	110	2466	1,07,937

Comparison of Hot Mix and Cold Mix Technology

ltem	Microsurfacing	Hot Mixed Bituminous Concrete
Noise Level	Low	High
Production of Toxic Fumes	None	High
Dust	Low	High
Worker Hazard	None	High
Energy Consumption	Low	High
Ease of Application	Very Easy	Not so
Ability to Resist Weathering	High	Low
Flexibility of Product	High	Low
Ability to Apply in Damp Condition	Yes	No
Thickness of Layer	4-16 mm	25-50 mm
Cost per m ²	Rs. 140-175	Rs. 250-300
Life Time Expectancy	3-5 Years	4-6 Years

Sustainable repair of potholes and patching

- ✓ Potholes are bowl shaped formation
- ✓ Grow wider and deeper, if not attended
- ✓ Potholes on the road is a matter of critics
- ✓ Cause of accidents on road
- ✓ People dies falling in deep potholes
- ✓ Cost of repair high with passage of time
- ✓ Repair by hot mix emit fumes
- ✓ Repairs do not last long

Sustainable repair techniques

- ✓ Infrared recycling patcher
- Cold mixes jet patcher
- ✓ Stock piled cold mix using cut back
- Ready to use patching mixes
- Emulsion based cold mixes
- ✓ Freshly prepared cold mixes

A view of Pothole

Infrared Recycling Patcher

Surface with pothole and raveling

Preparation of fresh mix

Heating of existing surface

Compacted surface by plate vibrator

A view of Jetpatcher

OPERACION DE BACHEO CON EQUIPO JETPATCHER

Cold mix in rectangular raveled surface

Surface repaired by Jetpatcher

Potholes repaired by ready mix

Ready to Use Cold Patching Mixes

- Quality of mix is consistent and inform
- Needs littlie time for application at sites
- Needs very less manpower during execution
- Reparation of surface for repairs in minimal
- ✓ Repair is possible in all adverse climatic conditions
- ✓ Zero wastage of material during execution
- ✓ Repair do not curve any health and environmental Hazard

Porthole Repair by Jet Patcher

Choice/Selection of Cold Mix Treatments for Different Climate/ Traffic Conditions (Warrants)

Fitle ofTraffic (CVPD)		Climate		Choice of
Treatment		Temperature	Rainfall	Emulsion
Prime Coat	No Limit	No Limit	No Limit	SS-1
Tack Coat	No Limit	No Limit	No Limit	RS-1
Seal Coat	<1500	No Limit	No Limit	SS-2
Sand Seal	<1500	No Limit	No Limit	SS-2
Cap Seal	<3000	No Limit	No Limit	RS-2, SS-2
				and Modified
Chip Seal	<1500	Avoid in Cold	No Limit	RS-2,
		Climate		Modified
Slurry Seal	<1500	No Limit	No Limit	SS-2
Microsurfacing	No Limit	No Limit	No Limit	Modified
OGPC	<1500	Moderate &	Medium	MS/SS-2
		cold climate		
MSS	<1500	Moderate &	Low	MS/SS-2
		cold climate		

BM	<1500	Moderate & cold climate	Low	MS/SS-2/ Tailor Made
SDBC	<3000	Moderate & cold climate	Low	SS-2/ Tailor Made
Half Warm Mix (DBM. SDBC. BC)	<4500	Moderate & cold climate	No limit	SS-2/ Tailor Made
Cold Recycling	<4500	Moderate & cold climate	No limit	SS-2/ Tailor Made
Patching	No Limit	No Limit	No limit	MS/SS-2/ Tailor Made

Safer construction and good health using cold mix technologies

THANK YOU