

Josef A. Czako Group Director-International Business Development Kapsch TrafficCom AG

Advanced Traffic Management Modern ITS Schemes applied in Electronic Tolling and Road Safety

5th IRF Regional Conference Institutional Arrengement for Reduction of Road Fatalities IHC, New Delhi 25th – 26th November 2010

Josef A. Czako Kapsch TrafficCom

Content

- 1. Who is Kapsch TrafficCom?
- 2. 1st Class Road Safety
- 3. Electronic Tolling to Support Road Safety
- 4. Legal Framework
- 5. ITS Applications for Road Safety

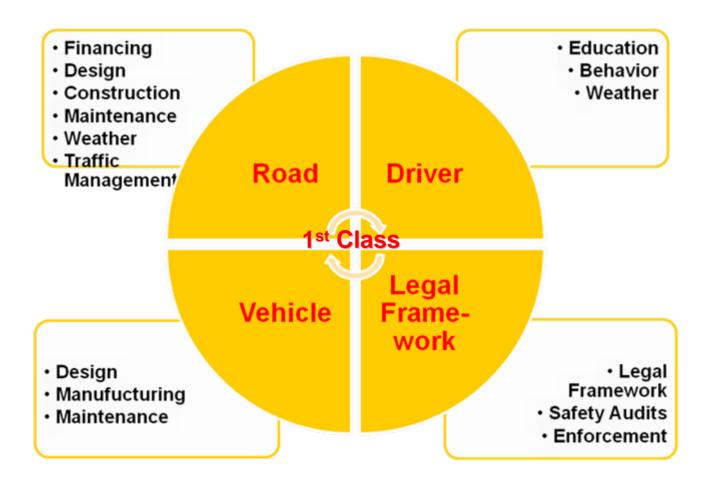
Who is Kapsch?

kapsch>>>

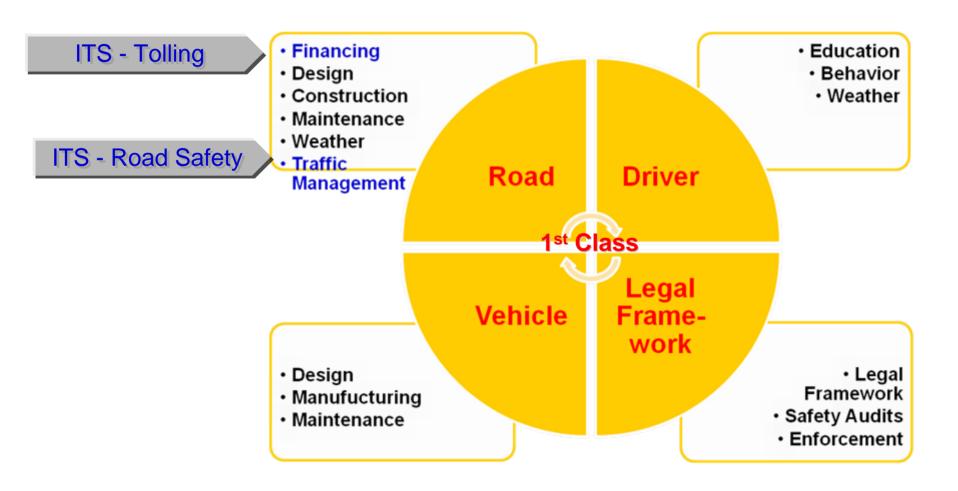
Kapsch Solutions

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	<section-header><section-header></section-header></section-header>	<section-header><image/><image/><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>
	Add-on Applications	

Kapsch References



1st Class Road Safety?


kapsch >>>

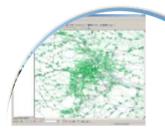
Strategic Elements of Road Safety

ITS to finance 1st class roads and to improve Road Safety

The Haddon Matrix & Telematics

Positive Effects due to Telematics

	FACTORS		
PHASE	HUMAN	VEHICLES AND EQUIPMENT	ENVIRONMENT
Pre-crash Crash prevention	Information Attitudes Impairment Police enforcement	Roadworthiness Lighting Braking Handling Speed management	Road design and road layout Speed limits Pedestrian facilities
Crash Injury prevention during the crash	Use of restraints Impairment	Occupant restraints Other safety devices Crash-protective design	Crash-protective roadside objects
Post-crash Life sustaining	First-aid skill Access to medics	Ease of access Fire risk	Rescue facilities Congestion



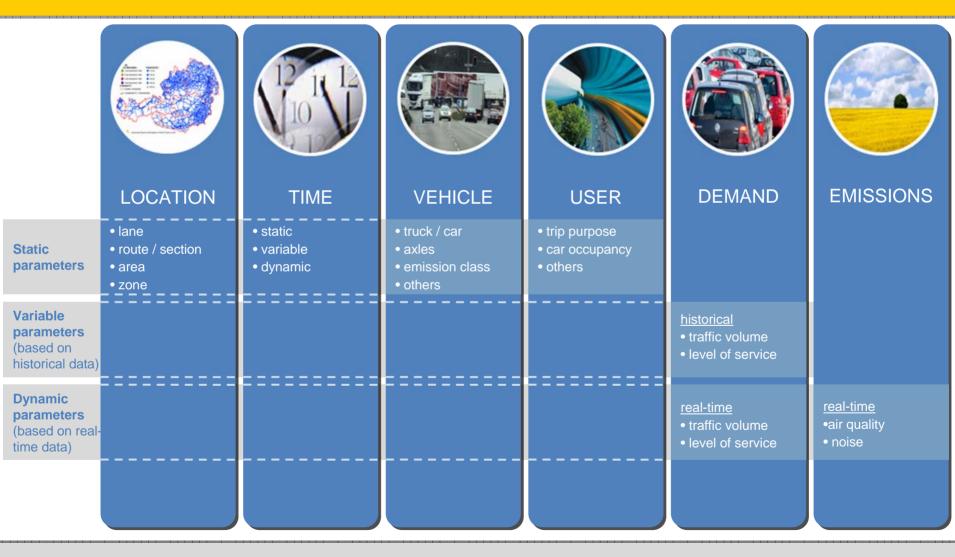
Electronic Tolling to Support Road Safety

Aspects of Tolling & Road User Charging

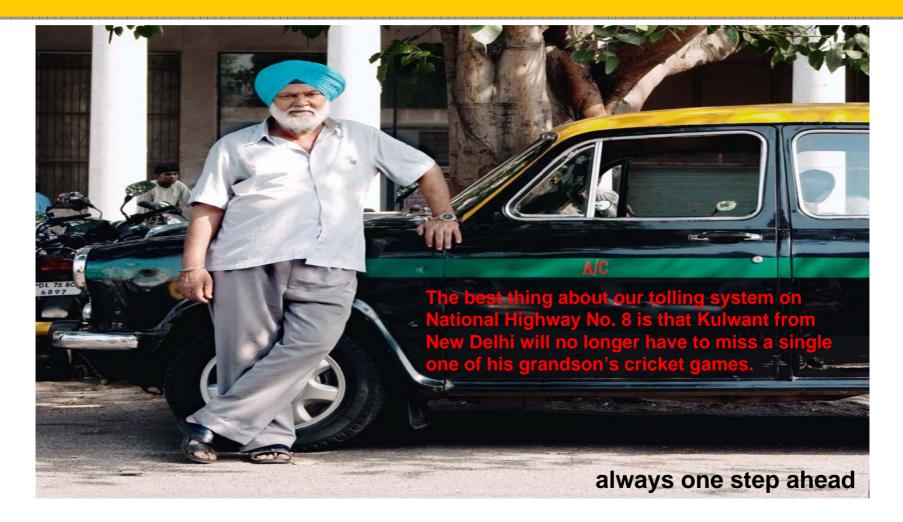
Traffic volume Demand Management 'User pays" principle Steering Mechanism Migration path

- Growing traffic volume requires increasing capacity, better utilization of existing traffic infrastructure, and the provision of efficient transportation networks into vibrant regions
- Governments on federal and local level consider introducing road tolling to
 - Generate revenues for viable transport projects
 - reduce congestion
 - Mitigate environmental impact
 - Reduce fatalities
- Road financing as the powerful tool for road managers when forming transportation policy?
- Trend from conventional/manual toll collection to Electronic Toll Collection (ETC) allowing multi lane free flow tolling (MLFF).
 - No interference to traffic flow
 - Gathering and processing of traffic data
 - High automation rate and high enforcement rate

1st Class Tolling Scheme: Free Flow mode of operation


Toll Plaza

Multi-Lane Free Flow



Parameters to set toll tariffs

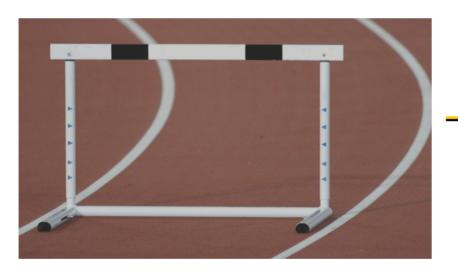
The best thing about tolling ...



Political & legal framework

Political & Legal Framework for the deployment of ITS

>>> Political framework


- "Top down" approach to give direction and to set the pace of ITS deployment
- The government has to create the framework conditions for the deployment of ITS
- Political will to overcome short term thinking as well as mental and national boundaries
- Tolling (Urban & Inter-Urban) as a tool for financing and change of behaviour
- Reduce fatalities and financial consequences

>>>> Legal framework

- "Top down" approach to align Policy with national legislation and the application/deployment of ITS
- Stage of development of ITS legislation vary from country to country

Hurdles to clear

- Isolated and fragmented applications
- Interagency disconnection at federal, regional and municipal level
- Short term thinking as well as mental and national boundaries
- Lack of national ITS standards
- Lack of systematic cooperation between ITS Nationals and International ITS community

ITS Schemes to Support Road Safety

Project Examples Section Speed Control Incident Detection Wrong Way Driving Intersection Safety Observation Scheme

Positive Effects of Speed Reduction

Rule:

- **Reduction of the average speed by 1% :**
- •Results in 2% less slightly injured,
- •3% less seriously injured, and
- •4% less killed persons

Examples from Europe for Positive Effects of Speed Reduction

England (Nottingham)

Dead or seriously injured	- 55%
Italy (Florence)	
Amount of accidents	- 22%
Slightly injured	- 34.75%
Fatalities	- 50.83%

Austria (Kaisermühlentunnel)

Slightly injured	- 33.3%
Fatalities / seriously injured	- 48.8%

kapsch >>>

Traditional Speed Measurement

Laser based

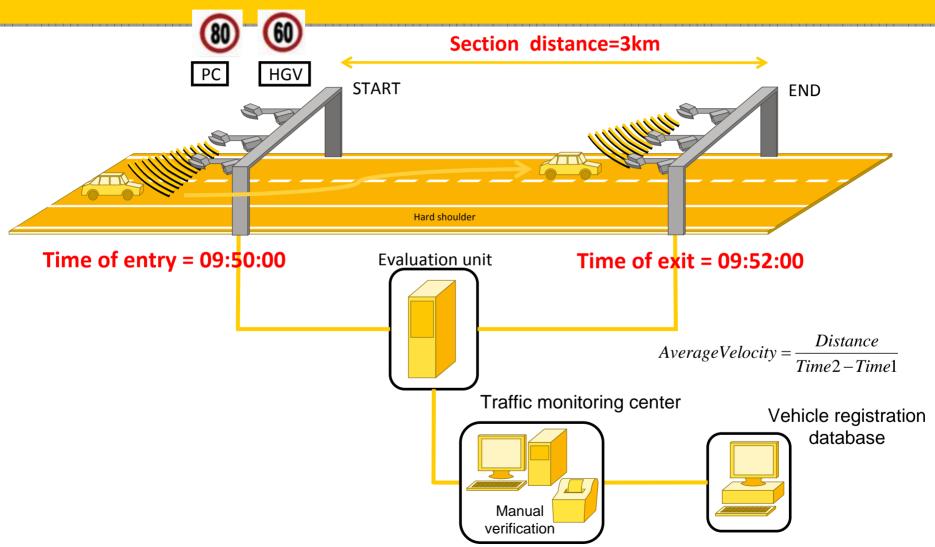
Mobile systems based on radar

Video based speed measurement

Stationary radar systems

mobile systems

Very efficient due to the surprise effect. A disadvantage is that they are personnel-intensive and a continuous operation is not possible.


Effect of such systems is very local

5th IRF Regional Conference, New Delhi

Applied ITS for Tolling and Road Safety | 22.2

Speed Measurement by Section Speed Control

Advantages of Section Speed Control

- Reduction accident probability and severity
 = primary aim of speed control
- Reduction of average velocity on a longer road section
 = secondary aim of speed control
- Reduce the environmental pollution (due to speed reduction)
- Reduce the noise disturbance (due to speed reduction)
- Automatic operation (24/7)
- Extendable by additional system features:
 - Distance measurement
 - Traffic statistics
 - · Wrong way driver detection
 - Height check
 - · Adaptive velocities
 - · Weight in Motion

Incident Detection Systems Digital Video Technology based Traffic Surveillance & Data Collection

Congestion and stopped car

Wrong way / lane drivers

Break down by occupancy

Speed of single objects Slow driver

Distance of single objects

Smoke

Lost Cargo / Debris

Movement

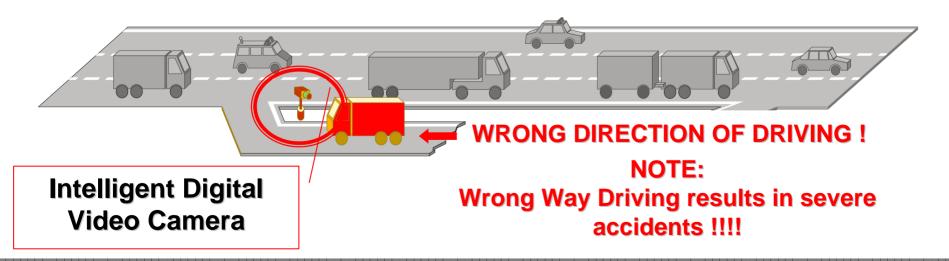
Dangerous Good (ADR), ANPR

Vehicle classification / counting

Pedestrians, Animals

Hard shoulder lane, cont.

Detection of Wrong Way Drivers by Digital Image Processing


Intelligent digital video camera installed at exits

If a vehicle with wrong driving direction is detected, the following actions are started:

report to a traffic control centre

alarming police

warning of drivers on that particular stretch of the road

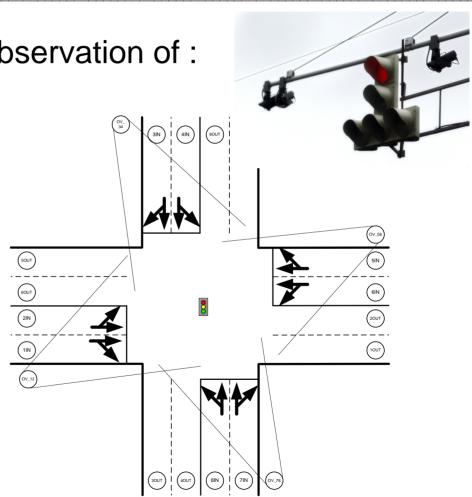
Example: Detection of Wrong Way Driver at Strenger Tunnel in Austria

The situation is alerted immediately and the following tunnel reflex is released :

- Minimise the negative effects of traffic disturbances like accidents or congestions
- Shorten the reaction time to incidents

Automatically triggered proceedings :

- The tunnel entrance traffic light turns red
- Real-time traffic management information signs limit speed to 60 km/h
- Text signs in emergency bays and portals indicate "Attention: Wrong Way Driver".



http://oesterreich.orf.at/tirol/stories/234654

kapsch >>>

Intersection Safety Observation Scheme

- Digital Camera Scheme for Observation of :
- Speed Detection
- •Red Light Offences
- Blocking of Intersection
- Wrong Lane Usage

Kapsch TrafficCom AG

Example: Interesection Safety Observation Scheme in Kazan / Russia

No driving on red light No blocking of intersection No turns if not allowed No speeding

Conclusions

- Road Safety is a shared responsibility and needs an integrated approach:
- Public awareness and education are essential
- Modern ITS Technologies support Road Safety
- (Law) Enforcement is as strong element in Road Safety
- Positive social economic benefits by :
 →less accidents, →less fatalities, →less congestion

Thank you for your attention!

Josef A. Czako Senior Vice President, International Business Development

> Kapsch TrafficCom AG Am Europlatz 2 | A-1120 Vienna | Austria

> > Phone +43 50 811 2150 Mobile +43 664 628 2150 Email josef.czako@kapsch.net www.kapsch.net